cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217843 Numbers which are the sum of one or more consecutive nonnegative cubes.

This page as a plain text file.
%I A217843 #46 May 24 2021 00:15:40
%S A217843 0,1,8,9,27,35,36,64,91,99,100,125,189,216,224,225,341,343,405,432,
%T A217843 440,441,512,559,684,729,748,775,783,784,855,1000,1071,1196,1241,1260,
%U A217843 1287,1295,1296,1331,1584,1728,1729,1800,1925,1989,2016,2024,2025,2197
%N A217843 Numbers which are the sum of one or more consecutive nonnegative cubes.
%C A217843 Contains A000578 (cubes), A005898 (two consecutive cubes), A027602 (three consecutive cubes), A027603 (four consecutive cubes) etc. - _R. J. Mathar_, Nov 04 2012
%C A217843 See A265845 for sums of consecutive positive cubes in more than one way. - _Reinhard Zumkeller_, Dec 17 2015
%C A217843 From _Lamine Ngom_, Apr 15 2021: (Start)
%C A217843 a(n) can always be expressed as the difference of the squares of two triangular numbers (A000217).
%C A217843 A168566 is the subsequence A000217(n)^2 - 1.
%C A217843 a(n) is also the product of two nonnegative integers whose sum and difference are both promic.
%C A217843 See example and formula sections for details. (End)
%H A217843 T. D. Noe, <a href="/A217843/b217843.txt">Table of n, a(n) for n = 1..1000</a>
%F A217843 a(n) >> n^2. Probably a(n) ~ kn^2 for some k but I cannot prove this. - _Charles R Greathouse IV_, Aug 07 2013
%F A217843 a(n) is of the form [x*(x+2*k+1)*(x*(x+2*k+1)+2*k*(k+1))]/4, sum of n consecutive cubes starting from (k+1)^3. - _Lamine Ngom_, Apr 15 2021
%e A217843 From _Lamine Ngom_, Apr 15 2021: (Start)
%e A217843 Arrange the positive terms in a triangle as follows:
%e A217843 n\k |   1    2    3    4    5    6    7
%e A217843 ----+-----------------------------------
%e A217843   0 |   1;
%e A217843   1 |   8,   9;
%e A217843   2 |  27,  35,  36;
%e A217843   3 |  64,  91,  99, 100;
%e A217843   4 | 125, 189, 216, 224, 225;
%e A217843   5 | 216, 341, 405, 432, 440, 441;
%e A217843   6 | 343, 559, 684, 748, 775, 783, 784;
%e A217843 Column 1: cubes = A000217(n+1)^2 - A000217(n)^2.
%e A217843 The difference of the squares of two consecutive triangular numbers (A000217) is a cube (A000578).
%e A217843 Column 2: sums of 2 consecutive cubes (A027602).
%e A217843 Column 3: sums of 3 consecutive cubes (A027603).
%e A217843 etc.
%e A217843 Column k: sums of k consecutive cubes.
%e A217843 Row n: A000217(n)^2 - A000217(m)^2, m < n.
%e A217843 T(n,n) = A000217(n)^2 (main diagonal).
%e A217843 T(n,n-1) = A000217(n)^2 - 1 (A168566) (2nd diagonal).
%e A217843 Now rectangularize this triangle as follows:
%e A217843 n\k |   1    2     3     4    5     6   ...
%e A217843 ----+--------------------------------------
%e A217843   0 |   1,   9,   36,  100,  225,  441, ...
%e A217843   1 |   8,  35,   99,  224,  440,  783, ...
%e A217843   2 |  27,  91,  216,  432,  775, 1287, ...
%e A217843   3 |  64, 189,  405,  748, 1260, 1989, ...
%e A217843   4 | 125, 341,  684, 1196, 1925, 2925, ...
%e A217843   5 | 216, 559, 1071, 1800, 2800, 4131, ...
%e A217843   6 | 343, 855, 1584, 2584, 3915, 5643, ...
%e A217843 The general form of terms is:
%e A217843 T(n,k) = [n^4 + A016825(k)*n^3 + A003154(k)*n^2 + A300758(k)*n]/4, sum of n consecutive cubes after k^3.
%e A217843 This expression can be factorized into [n*(n + A005408(k))*(n*(n + A005408(k)) + 4*A000217(k))]/4.
%e A217843 For k = 1, the sequence provides all cubes: T(n,1) = A000578(k).
%e A217843 For k = 2, T(n,2) = A005898(k), centered cube numbers, sum of two consecutive cubes.
%e A217843 For k = 3, T(n,3) = A027602(k), sum of three consecutive cubes.
%e A217843 For k = 4, T(n,4) = A027603(k), sum of four consecutive cubes.
%e A217843 For k = 5, T(n,5) = A027604(k), sum of five consecutive cubes.
%e A217843 T(n,n) = A116149(n), sum of n consecutive cubes after n^3 (main diagonal).
%e A217843 For n = 0, we obtain the subsequence T(0,k) = A000217(n)^2, product of two numbers whose difference is 0*1 (promic) and sum is promic too.
%e A217843 For n = 1, we obtain the subsequence T(1,k) = A168566(x), product of two numbers whose difference is 1*2 (promic) and sum is promic too.
%e A217843 For n = 2, we obtain the subsequence T(2,k) = product of two numbers whose difference is 2*3 (promic) and sum is promic too.
%e A217843 etc.
%e A217843 For n = x, we obtain the subsequence formed by products of two numbers whose difference is the promic x*(x+1) and sum is promic too.
%e A217843 Consequently, if m is in the sequence, then m can be expressed as the product of two nonnegative integers whose sum and difference are both promic. (End)
%t A217843 nMax = 3000; t = {0}; Do[k = n; s = 0; While[s = s + k^3; s <= nMax, AppendTo[t, s]; k++], {n, nMax^(1/3)}]; t = Union[t]
%o A217843 (Haskell)
%o A217843 import Data.Set (singleton, deleteFindMin, insert, Set)
%o A217843 a217843 n = a217843_list !! (n-1)
%o A217843 a217843_list = f (singleton (0, (0,0))) (-1) where
%o A217843    f s z = if y /= z then y : f s'' y else f s'' y
%o A217843               where s'' = (insert (y', (i, j')) $
%o A217843                            insert (y' - i ^ 3 , (i + 1, j')) s')
%o A217843                     y' = y + j' ^ 3; j' = j + 1
%o A217843                     ((y, (i, j)), s') = deleteFindMin s
%o A217843 -- _Reinhard Zumkeller_, Dec 17 2015, May 12 2015
%o A217843 (PARI) lista(nn) = {my(list = List([0])); for (i=1, nn, my(s = 0); forstep(j=i, 1, -1, s += j^3; if (s > nn^3, break); listput(list, s););); Set(list);} \\ _Michel Marcus_, Nov 13 2020
%Y A217843 Cf. A034705, A217844-A217850, A062682, A131643, A240137.
%Y A217843 Cf. A000578, A005898, A027602, A027603, A027604.
%Y A217843 Cf. A265845 (subsequence).
%Y A217843 Cf. A000217 (triangular numbers), A046092 (4*A000217).
%Y A217843 Cf. A168566 (A000217^2 - 1).
%Y A217843 Cf. A002378 (promics), A016825 (singly even numbers), A003154 (stars numbers).
%Y A217843 Cf. A000330 (square pyramidal numbers), A300758 (12*A000330).
%Y A217843 Cf. A005408 (odd numbers).
%K A217843 nonn
%O A217843 1,3
%A A217843 _T. D. Noe_, Oct 23 2012
%E A217843 Name edited by _N. J. A. Sloane_, May 24 2021