This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217859 #25 Oct 02 2017 02:17:20 %S A217859 1,3,5,2,12,7,21,25,1,58,63,9,126,178,39,341,466,140,4,867,1253,470, %T A217859 25,2334,3418,1431,135,6218,9365,4358,544,6,17016,25924,12871,2042,50, %U A217859 46351,72207,37993,7056,291,127842,202345,111142,23483,1383,4,353297,568822,325359,75701,5754,60 %N A217859 Triangular array read by rows. T(n,k) is the number of functions on n unlabeled nodes that have exactly k unique components (n >= 1, k >= 1). %C A217859 Row sums are A001372. %C A217859 T(n,1) = A002861(n) + 1 when n is prime (counts connected functions and the identity function). %H A217859 N. J. A. Sloane, <a href="https://oeis.org/a001372.gif">Illustration of initial terms</a> %F A217859 O.g.f.: Product_{n>=1} ((y*x^n - x^n + 1)/(1 - x^n))^A002861(n). %e A217859 Triangle begins: %e A217859 1; %e A217859 3, %e A217859 5, 2; %e A217859 12, 7; %e A217859 21, 25, 1; %e A217859 58, 63, 9; %e A217859 126, 178, 39; %e A217859 341, 466, 140, 4; %e A217859 867, 1253, 470, 25; %e A217859 2334, 3418, 1431, 135; %e A217859 6218, 9365, 4358, 544, 6; %e A217859 17016, 25924, 12871, 2042, 50; %e A217859 46351, 72207, 37993, 7056, 291; %e A217859 127842, 202345, 111142, 23483, 1383, 4; %e A217859 353297, 568822, 325359, 75701, 5754, 60; %e A217859 T(3,2)=2 because (in the link) the third and the fifth digraphs on 3 nodes are composed of 2 unique components. %t A217859 Needs["Combinatorica`"]; %t A217859 nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];c=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,1,30}]],1];CoefficientList[Series[Product[((y x^i +1-x^i)/(1-x^i))^c[[i]],{i,1,nn-1}],{x,0,15}],{x,y}]//Grid %t A217859 (* after code given by _Robert A. Russell_ in A000081 *) %K A217859 nonn,tabf %O A217859 1,2 %A A217859 _Geoffrey Critzer_, Oct 13 2012