This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217908 #18 Sep 12 2024 15:58:35 %S A217908 1296,4096,6561,10000,38416,50625,194481,234256,262144,390625,456976, %T A217908 531441,1000000,1048576,1185921,1336336,1500625,2085136,2313441, %U A217908 4477456,5764801,6765201,7529536,9150625,10077696,10556001,11316496,11390625,14776336,17850625 %N A217908 Semiprime powers of distinct semiprimes. %C A217908 Subset of A113877. %H A217908 Christian N. K. Anderson, <a href="/A217908/b217908.txt">Table of n, a(n) for n = 1..9006</a>, for a(n) < 1.5*10^18 %e A217908 6561=9^4, and 9 and 4 are both semiprime. 46656 = 6^6 is excluded because the semiprimes are not distinct. %o A217908 (Python) %o A217908 from math import isqrt %o A217908 from sympy import primepi, primerange, integer_nthroot, factorint %o A217908 def A217908(n): %o A217908 def A072000(n): return int(-((t:=primepi(s:=isqrt(n)))*(t-1)>>1)+sum(primepi(n//p) for p in primerange(s+1))) %o A217908 def f(x): return int(n+x-sum(A072000(integer_nthroot(x, p)[0])-(p**p<=x) for p in range(4,x.bit_length()) if sum(factorint(p).values())==2)) %o A217908 def bisection(f,kmin=0,kmax=1): %o A217908 while f(kmax) > kmax: kmax <<= 1 %o A217908 while kmax-kmin > 1: %o A217908 kmid = kmax+kmin>>1 %o A217908 if f(kmid) <= kmid: %o A217908 kmax = kmid %o A217908 else: %o A217908 kmin = kmid %o A217908 return kmax %o A217908 return bisection(f,n,n) # _Chai Wah Wu_, Sep 12 2024 %Y A217908 Cf. A113877. %K A217908 nonn %O A217908 1,1 %A A217908 _Kevin L. Schwartz_ and _Christian N. K. Anderson_, Mar 25 2013