This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217915 #29 Sep 08 2018 18:53:21 %S A217915 1,1,511,2375101,45232115901,2436684974110751,299310102746948685757, %T A217915 72786959006434393367186463,31712979422428631132831124895809, %U A217915 22982258052528294182955639980819773510,26154716515862881292012777396577993781727011 %N A217915 O.g.f.: Sum_{n>=1} (n^5)^n * exp(-n^5*x) * x^n / n!. %H A217915 Vincenzo Librandi, <a href="/A217915/b217915.txt">Table of n, a(n) for n = 0..100</a> %F A217915 a(n) = Stirling2(5*n, n). %F A217915 a(n) = [x^(5*n)] (5*n)! * (exp(x) - 1)^n / n!. %F A217915 a(n) = [x^(4*n)] 1 / Product_{k=1..n} (1-k*x). %F A217915 a(n) = 1/n! * [x^n] Sum_{k>=0} (k^5)^k*x^k / (1 + k^5*x)^(k+1). %F A217915 a(n) ~ n^(4*n)*5^(5*n) / (sqrt(2*Pi*n*(1-c)) * exp(4*n) * (5-c)^(4*n) * c^n), where c = -LambertW(-5/exp(5)) = 0.0348857682557... - _Vaclav Kotesovec_, May 23 2013 %e A217915 O.g.f.: A(x) = 1 + x + 511*x^2 + 2375101*x^3 + 45232115901*x^4 +...+ Stirling2(5*n, n)*x^n +... %e A217915 where %e A217915 A(x) = 1 + 1^5*x*exp(-1^5*x) + 2^10*exp(-2^5*x)*x^2/2! + 3^15*exp(-3^5*x)*x^3/3! + 4^20*exp(-4^5*x)*x^4/4! + 5^25*exp(-5^5*x)*x^5/5! +... %e A217915 is a power series in x with integer coefficients. %t A217915 Table[StirlingS2[5*n,n],{n,0,20}] (* _Vaclav Kotesovec_, May 23 2013 *) %o A217915 (PARI) {a(n)=polcoeff(sum(k=0,n,(k^5)^k*exp(-k^5*x +x*O(x^n))*x^k/k!),n)} %o A217915 (PARI) {a(n)=1/n!*polcoeff(sum(k=0, n, (k^5)^k*x^k/(1+k^5*x +x*O(x^n))^(k+1)), n)} %o A217915 (PARI) {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(4*n))), 4*n)} %o A217915 (PARI) {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)} %o A217915 {a(n) = Stirling2(5*n, n)} %o A217915 for(n=0,12,print1(a(n),", ")) %o A217915 (Maxima) makelist(stirling2(5*n, n), n, 0, 10); /* _Martin Ettl_, Oct 15 2012 */ %Y A217915 Cf. A007820, A217913, A217914, A217900, A008277. %K A217915 nonn %O A217915 0,3 %A A217915 _Paul D. Hanna_, Oct 14 2012