This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217922 #42 Jun 11 2025 17:18:55 %S A217922 1,1,2,1,6,7,3,24,46,40,15,120,326,430,315,105,720,2556,4536,4900, %T A217922 3150,945,5040,22212,49644,70588,66150,38115,10395,40320,212976, %U A217922 574848,1011500,1235080,1032570,540540,135135 %N A217922 Triangle read by rows: labeled trees counted by improper edges. %C A217922 T(n,k) is the number of labeled trees on [n], rooted at 1, with k improper edges, for n >= 1, k >= 0. See Zeng link for definition of improper edge. %H A217922 G. C. Greubel, <a href="/A217922/b217922.txt">Rows n = 1..50 of the irregular triangle, flattened</a> %H A217922 J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, <a href="http://arxiv.org/abs/1307.2010">Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure</a>, arXiv:1307.2010 [math.CO], 2013-2014. %H A217922 William Y. C. Chen, Amy M. Fu, and Elena L. Wang, <a href="https://arxiv.org/abs/2506.01649">A Grammatical Calculus for the Ramanujan Polynomials</a>, arXiv:2506.01649 [math.CO], 2025. See p. 3. %H A217922 Dominique Dumont and Armand Ramamonjisoa, <a href="https://doi.org/10.37236/1275">Grammaire de Ramanujan et Arbres de Cayley</a>, Electr. J. Combinatorics, Volume 3, Issue 2 (1996) R17 (see page 17). %H A217922 Matthieu Josuat-Vergès, <a href="http://arxiv.org/abs/1310.7531">Derivatives of the tree function</a>, arXiv preprint arXiv:1310.7531 [math.CO], 2013. %H A217922 Lucas Randazzo, <a href="https://arxiv.org/abs/1905.02083">Arboretum for a generalization of Ramanujan polynomials</a>, arXiv:1905.02083 [math.CO], 2019. %H A217922 Jiang Zeng, <a href="https://web.archive.org/web/20240422220026/http://math.univ-lyon1.fr/homes-www/zeng/public_html/paper/publication.html">A Ramanujan sequence that refines the Cayley formula for trees</a>, Ramanujan Journal 3 (1999) 1, 45-54, <a href="http://dx.doi.org/10.1023/A:1009809224933">[DOI]</a> %F A217922 T(n, k) = (n-1)*T(n-1, k) + (n+k-3)*T(n-1, k-1), for 1 <= k <= n-2, with T(n, 0) = (n-1)!. - _G. C. Greubel_, Jan 10 2025 %e A217922 Triangle begins: %e A217922 \ k 0....1....2....3....4...... %e A217922 n %e A217922 1 |..1 %e A217922 2 |..1 %e A217922 3 |..2....1 %e A217922 4 |..6....7....3 %e A217922 5 |.24...46...40....15 %e A217922 6 |120..326..430...315...105 %e A217922 T(4,2) = 3 because we have 1->3->4->2, 1->4->2->3, 1->4->3->2, in each of which the last 2 edges are improper. %t A217922 T[n_, k_]:= T[n,k]= If[k<0 || k>n-2, 0, If[k==0, (n-1)!, (n-1)*T[n-1,k] + (n+k-3)*T[n-1, k-1]]]; %t A217922 Join[{1}, Table[T[n,k], {n,12}, {k,0,n-2}]//Flatten] (* modified by _G. C. Greubel_, May 07 2019 *) %o A217922 (SageMath) %o A217922 def T(n, k): %o A217922 if k==0: return factorial(n-1) %o A217922 elif (k<0 or k > n-2): return 0 %o A217922 else: return (n-1)*T(n-1, k) + (n+k-3)* T(n-1, k-1) %o A217922 flatten([1] + [[T(n, k) for k in (0..n-2)] for n in (2..12)]) # _G. C. Greubel_, May 07 2019 %o A217922 (Magma) %o A217922 function T(n,k) // T = A217922 %o A217922 if k lt 0 or k gt n-2 then return 0; %o A217922 elif k eq 0 then return Factorial(n-1); %o A217922 else return (n-1)*T(n-1,k) + (n+k-3)*T(n-1,k-1); %o A217922 end if; %o A217922 end function; %o A217922 [1] cat [T(n,k): k in [0..n-2], n in [2..12]]; // _G. C. Greubel_, Jan 10 2025 %Y A217922 Row sums are A000272. %Y A217922 Cf. A054589, A075856. %K A217922 nonn,tabf %O A217922 1,3 %A A217922 _David Callan_, Oct 14 2012