cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217940 Triangle read by rows: coefficients of polynomials Q_n(x) arising in study of Riemann zeta function.

Original entry on oeis.org

1, 1, 1, 4, 4, 4, 36, 33, 42, 33, 576, 480, 648, 720, 456, 14400, 10960, 14900, 18780, 17900, 9460, 518400, 362880, 487200, 648240, 730800, 606480, 274800, 25401600, 16465680, 21656040, 29481585, 36149820, 36569190, 26845140, 10643745, 1625702400, 981872640, 1260878080, 1729096320, 2218287120, 2495765440, 2285697120, 1503969600, 530052880
Offset: 1

Views

Author

N. J. A. Sloane, Oct 23 2012

Keywords

Examples

			Triangle begins:
1
1, 1
4, 4, 4
36, 33, 42, 33
576, 480, 648, 720, 456
14400, 10960, 14900, 18780, 17900, 9460
518400, 362880, 487200, 648240, 730800, 606480, 274800
...
		

Crossrefs

Right-hand diagonal is A002190.

Programs

  • Mathematica
    Clear[q]; q[n_, 1] := (n-1)!^2; q[n_, k_] := q[n, k] = Sum[ Binomial[n-1, j]*Binomial[n-1, j+1]* Sum[q[j+1, r]*q[n-j-1, k-r], {r, Max[1, -n+j+k+1], Min[j+1, k-1]}], {j, 0, n-2}]; Table[q[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 13 2013 *)

Extensions

More terms from Jean-François Alcover, Feb 13 2013