A217940 Triangle read by rows: coefficients of polynomials Q_n(x) arising in study of Riemann zeta function.
1, 1, 1, 4, 4, 4, 36, 33, 42, 33, 576, 480, 648, 720, 456, 14400, 10960, 14900, 18780, 17900, 9460, 518400, 362880, 487200, 648240, 730800, 606480, 274800, 25401600, 16465680, 21656040, 29481585, 36149820, 36569190, 26845140, 10643745, 1625702400, 981872640, 1260878080, 1729096320, 2218287120, 2495765440, 2285697120, 1503969600, 530052880
Offset: 1
Examples
Triangle begins: 1 1, 1 4, 4, 4 36, 33, 42, 33 576, 480, 648, 720, 456 14400, 10960, 14900, 18780, 17900, 9460 518400, 362880, 487200, 648240, 730800, 606480, 274800 ...
Links
- Juan Arias de Reyna, Richard P. Brent and Jan van de Lune, On the sign of the real part of the Riemann zeta-function, arXiv preprint arXiv:1205.4423, 2012
Crossrefs
Right-hand diagonal is A002190.
Programs
-
Mathematica
Clear[q]; q[n_, 1] := (n-1)!^2; q[n_, k_] := q[n, k] = Sum[ Binomial[n-1, j]*Binomial[n-1, j+1]* Sum[q[j+1, r]*q[n-j-1, k-r], {r, Max[1, -n+j+k+1], Min[j+1, k-1]}], {j, 0, n-2}]; Table[q[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 13 2013 *)
Extensions
More terms from Jean-François Alcover, Feb 13 2013