A217948 List of numbers 2n for which the riffle permutation permutes all except the first and last of the 2n cards.
4, 6, 12, 14, 20, 30, 38, 54, 60, 62, 68, 84, 102, 108, 132, 140, 150, 164, 174, 180, 182, 198, 212, 228, 270, 294, 318, 348, 350, 374, 380, 390, 420, 422, 444, 462, 468, 492, 510, 524, 542, 548, 558, 564, 588, 614, 620, 654, 660, 662, 678, 702, 710, 758, 774, 788, 798
Offset: 1
Keywords
References
- Tiago Januario and Sebastian Urrutia, An Analytical Study in Connectivity of Neighborhoods for Single Round Robin Tournaments, 14th INFORMS Computing Society Conference, Richmond, Virginia, January 11-13, 2015, pp. 188-199; http://dx.doi.org/10.1287/ics.2015.0014
- Tiago Januario, S Urrutia, D de Werra, Sports scheduling search space connectivity: A riffle shuffle driven approach, Discrete Applied Mathematics, Volume 211, 1 October 2016, Pages 113-120; http://dx.doi.org/10.1016/j.dam.2016.04.018
Links
- Olivier Gérard and Vincenzo Librandi, Table of n, a(n) for n = 1..6000 (first 386 terms from Olivier Gérard).
- Sebastián Urrutia, Dominique de Werra, and Tiago Januario, Recoloring subgraphs of K_(2n) for Sports Scheduling, Theoretical Computer Science (2021) Vol. 877, 36-45.
Programs
-
Mathematica
(* v8 *) 2*Select[Range[2,1000],Function[n,Sort[First[First[ PermutationCycles@Join[Table[2r-1,{r,1,n}],Table[2r-2n,{r,n+1,2n}]]]]]== Range[2,2n-1]]] (* Olivier Gérard, Nov 08 2012 *)
Formula
From Joerg Arndt, Dec 15 2012: (Start)
Apparently a(n) = A179194(n) - 1.
a(n) = 2 * A051733(n). (End)
Comments