cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217954 T(n,k) = number of n-element 0..3 arrays with each element the minimum of k adjacent elements of a random 0..3 array of n+k-1 elements.

Original entry on oeis.org

4, 4, 16, 4, 16, 64, 4, 16, 50, 256, 4, 16, 50, 144, 1024, 4, 16, 50, 130, 422, 4096, 4, 16, 50, 130, 310, 1268, 16384, 4, 16, 50, 130, 296, 736, 3823, 65536, 4, 16, 50, 130, 296, 624, 1821, 11472, 262144, 4, 16, 50, 130, 296, 610, 1289, 4673, 34350, 1048576, 4, 16
Offset: 1

Views

Author

R. H. Hardin, suggestion that the diagonal might be a polynomial from L. Edson Jeffery in the Sequence Fans Mailing List, Oct 15 2012

Keywords

Comments

See A228461 for comments on the definition. - N. J. A. Sloane, Sep 02 2013
Table starts
........4......4......4.....4.....4.....4.....4.....4.....4.....4.....4.....4
.......16.....16.....16....16....16....16....16....16....16....16....16....16
.......64.....50.....50....50....50....50....50....50....50....50....50....50
......256....144....130...130...130...130...130...130...130...130...130...130
.....1024....422....310...296...296...296...296...296...296...296...296...296
.....4096...1268....736...624...610...610...610...610...610...610...610...610
....16384...3823...1821..1289..1177..1163..1163..1163..1163..1163..1163..1163
....65536..11472...4673..2741..2209..2097..2083..2083..2083..2083..2083..2083
...262144..34350..12107..6134..4202..3670..3558..3544..3544..3544..3544..3544
..1048576.102896..31103.14269..8366..6434..5902..5790..5776..5776..5776..5776
..4194304.308419..79039.33577.17569.11666..9734..9202..9090..9076..9076..9076
.16777216.924532.199819.78304.38251.22313.16410.14478.13946.13834.13820.13820

Examples

			Some solutions for n=4 k=4
..0....1....0....1....1....0....1....2....0....1....1....1....0....0....3....0
..0....1....1....1....3....3....2....2....2....1....2....2....1....2....3....2
..1....3....3....2....3....2....3....3....2....1....1....3....1....2....2....3
..1....1....3....3....0....0....0....1....0....0....1....3....0....1....2....0
		

Crossrefs

Column 2 is A203094(n+1). A217949 is also a column. Cf. A228461, A217883.

Formula

Empirical for column k:
k=2: a(n) = 4*a(n-1) -6*a(n-2) +10*a(n-3) -5*a(n-4) +6*a(n-5) -a(n-6) +a(n-7)
k=3: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) +5*a(n-4) -4*a(n-5) +6*a(n-6) +4*a(n-7) +2*a(n-9) +a(n-10)
k=4: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +6*a(n-5) -4*a(n-6) +6*a(n-7) +4*a(n-8) +5*a(n-9) +a(n-10) +3*a(n-11) +2*a(n-12) +a(n-13)
k=5: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +6*a(n-6) -4*a(n-7) +6*a(n-8) +4*a(n-9) +5*a(n-10) +6*a(n-11) +2*a(n-12) +4*a(n-13) +3*a(n-14) +2*a(n-15) +a(n-16)
k=6: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +6*a(n-7) -4*a(n-8) +6*a(n-9) +4*a(n-10) +5*a(n-11) +6*a(n-12) +7*a(n-13) +3*a(n-14) +5*a(n-15) +4*a(n-16) +3*a(n-17) +2*a(n-18) +a(n-19)
k=7: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +6*a(n-8) -4*a(n-9) +6*a(n-10) +4*a(n-11) +5*a(n-12) +6*a(n-13) +7*a(n-14) +8*a(n-15) +4*a(n-16) +6*a(n-17) +5*a(n-18) +4*a(n-19) +3*a(n-20) +2*a(n-21) +a(n-22)
Diagonal: a(n) = (1/720)*n^6 + (1/48)*n^5 + (23/144)*n^4 + (9/16)*n^3 + (241/180)*n^2 + (11/12)*n + 1