This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217973 #29 Oct 21 2021 01:34:02 %S A217973 1,2,3,4,5,6,7,8,9,12,18,21,24,27,36,42,45,48,54,63,72,81,84,111,112, %T A217973 114,117,126,132,133,135,144,152,153,156,162,171,192,195,198,216,222, %U A217973 224,225,228,234,243,247,252,261,264,266,285,288,312,315,322,324,333,336 %N A217973 Niven (or Harshad) numbers not containing the digit 0. %C A217973 Andreescu & Andrica prove that this sequence is infinite. %C A217973 For each positive integer n, there exists a n-digit Niven (or Harshad) number not containing the digit 0 (see A348318 for more explanations and links). - _Bernard Schott_, Oct 20 2021 %D A217973 Titu Andreescu and Dorin Andrica, Number Theory, Structures, Examples, and Problems, Problem 5.2.3 on pages 109-110. %H A217973 Charles R Greathouse IV, <a href="/A217973/b217973.txt">Table of n, a(n) for n = 1..10000</a> %p A217973 filter:= proc(n) local L; %p A217973 L:= convert(n,base,10); %p A217973 not has(L,0) and n mod convert(L,`+`) = 0 %p A217973 end proc: %p A217973 select(filter, [$1..1000]); # _Robert Israel_, Apr 01 2016 %t A217973 Select[Range[400], IntegerQ[ #/(Plus @@ IntegerDigits[#])] && DigitCount[#, 10, 0] == 0 &] (* _Alonso del Arte_, Oct 16 2012 *) %o A217973 (PARI) is(n)=vecsort(digits(n))[1]&&n%sumdigits(n)==0 %o A217973 (Python) %o A217973 def ok(n): s = str(n); return '0' not in s and n%sum(map(int, s)) == 0 %o A217973 print([k for k in range(337) if ok(k)]) # _Michael S. Branicky_, Oct 20 2021 %Y A217973 Intersection of A005349 and A052382. %Y A217973 A216405 is a subsequence. %Y A217973 Cf. A348150, A348316, A348317, A348318. %K A217973 nonn,base,easy %O A217973 1,2 %A A217973 _Charles R Greathouse IV_, Oct 16 2012