This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218004 #22 Oct 21 2020 22:47:39 %S A218004 1,1,2,4,6,9,14,19,27,37,51,67,91,118,156,202,262,334,430,543,690,867, %T A218004 1090,1358,1696,2099,2600,3201,3939,4820,5899,7181,8738,10590,12821, %U A218004 15467,18644,22396,26878,32166,38450,45842,54599,64870,76990,91181,107861,127343,150182,176788,207883 %N A218004 Number of equivalence classes of compositions of n where two compositions a,b are considered equivalent if the summands of a can be permuted into the summands of b with an even number of transpositions. %C A218004 a(n) = A000041(n) + A000009(n) - 1 where A000041 is the partition numbers and A000009 is the number of partitions into distinct parts. %C A218004 From _Gus Wiseman_, Oct 14 2020: (Start) %C A218004 Also the number of compositions of n that are either strictly increasing or weakly decreasing. For example, the a(1) = 1 through a(6) = 14 compositions are: %C A218004 (1) (2) (3) (4) (5) (6) %C A218004 (11) (12) (13) (14) (15) %C A218004 (21) (22) (23) (24) %C A218004 (111) (31) (32) (33) %C A218004 (211) (41) (42) %C A218004 (1111) (221) (51) %C A218004 (311) (123) %C A218004 (2111) (222) %C A218004 (11111) (321) %C A218004 (411) %C A218004 (2211) %C A218004 (3111) %C A218004 (21111) %C A218004 (111111) %C A218004 A007997 counts only compositions of length 3. %C A218004 A329398 appears to be the weakly increasing version. %C A218004 A333147 is the strictly decreasing version. %C A218004 A333255 union A114994 ranks these compositions using standard compositions (A066099). %C A218004 A337482 counts the complement. %C A218004 (End) %e A218004 a(4) = 6 because the 6 classes can be represented by: 4, 3+1, 1+3, 2+2, 2+1+1, 1+1+1+1. %t A218004 nn=50;p=CoefficientList[Series[Product[1/(1-x^i),{i,1,nn}],{x,0,nn}],x];d= CoefficientList[Series[Sum[Product[x^i/(1-x^i),{i,1,k}],{k,0,nn}],{x,0,nn}],x];p+d-1 %t A218004 (* second program *) %t A218004 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Less@@#||GreaterEqual@@#&]],{n,0,15}] (* _Gus Wiseman_, Oct 14 2020 *) %Y A218004 A000009 counts strictly increasing compositions, ranked by A333255. %Y A218004 A000041 counts weakly decreasing compositions, ranked by A114994. %Y A218004 A001523 counts unimodal compositions (strict: A072706). %Y A218004 A007318 and A097805 count compositions by length. %Y A218004 A032020 counts strict compositions, ranked by A233564. %Y A218004 A332834 counts compositions not increasing nor decreasing (strict: A333149). %Y A218004 Cf. A115981, A225620, A332578, A332833, A332874, A333150, A333190, A333191, A333256, A337483, A337484. %K A218004 nonn %O A218004 0,3 %A A218004 _Geoffrey Critzer_, Oct 17 2012