A218030 Numbers k equal to half of the product of the nonzero (base-10) digits of k^2.
2, 5, 54, 648, 2160, 337169025526136832000, 685506275314921762068267522458966662115416623590907309075726336000000, 46641846972427276691124922228108091690332947069125333309512419901440000000000
Offset: 1
Examples
For n=5, n^2 is 25; the product of the digits of 25 is 2*5 = 10, which is equal to 2*n.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..12 (all terms < 10^300)
- Michael S. Branicky, Python program.
- Giovanni Resta, C program for this and related sequences.
Crossrefs
Programs
-
Mathematica
mx = 2^255; L = {}; p2 = 1; While[p2 < mx, Print["--> 2^", Log[2, p2]]; p3 = p2; While [p3 < mx, p5 = p3; While[p5 < mx, n = p5; While[n < mx, If[2 n == Times @@ Select[IntegerDigits[n^2], # > 0 &], AppendTo[L, n]; Print[n]]; n *= 7]; p5 *= 5]; p3 *= 3]; p2 *= 2]; Sort[L] (* Giovanni Resta, Oct 19 2012 *)
-
PARI
is_A218030(n)={my(d=digits(n^2));n*=2;for(i=1,#d,d[i]||next;n%d[i]&return;n\=d[i]);n==1} \\ M. F. Hasler, Oct 19 2012
Comments