This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218046 #37 May 13 2013 01:54:22 %S A218046 2,11,23,83,113,131,173,191,233,239,251,263,281,293,359,419,431,449, %T A218046 503,641,653,659,701,719,743,761,809,821,881,911,953,1013,1019,1031, %U A218046 1049,1103,1223,1229,1289,1301,1433,1439,1451,1493,1511,1559,1583,1601,1619 %N A218046 Primes p such that 8p + 2r is a primorial for some r in A006512. %C A218046 The primes p in this sequence satisfy b#/2 = 4p + r, where p is a prime, b# is a primorial, and r is the second of the twin prime pair (r-2, r). %C A218046 Each p is therefore associated with at least one primorial, and with a pair of twin primes. %C A218046 The empirical evidence suggests that each twin prime pair is associated with at least one p, and each p with a twin prime pair. I conjecture that this sequence (and therefore the sequence of twin primes) is infinite. %H A218046 Charles R Greathouse IV, <a href="/A218046/b218046.txt">Table of n, a(n) for n = 1..354</a> %H A218046 Michael Kaarhus, <a href="http://www.christaboveme.com/pri/conj-ii-d.pdf">Twin Prime Conjectures 1, 2 and 3</a>, 2012, (PDF) %e A218046 8*2 + 2*7 = 5# %e A218046 8*11 + 2*61 = 7# %e A218046 8*23 + 2*13 = 7# %e A218046 8*83 + 2*823 = 11# %e A218046 8*113 + 2*14563 = 13# %e A218046 8*131 + 2*254731 = 17# %e A218046 8*173 + 2*463 = 11# %e A218046 8*191 + 2*14251 = 13# %e A218046 8*233 + 2*14083 = 13# %e A218046 8*239 + 2*199 = 11# %e A218046 8*251 + 2*151 = 11# %e A218046 8*263 + 2*103 = 11# %e A218046 8*281 + 2*31 = 11# %e A218046 8*293 + 2*307444891294244533 = 47# %e A218046 8*359 + 2*253819 = 17# %o A218046 (PARI) list(lim)={ %o A218046 my(v=List(),P=3,q); %o A218046 forprime(p=5,lim, %o A218046 P*=p; %o A218046 forprime(t=2,min(lim, (P-2)\4), %o A218046 q=P-4*t; %o A218046 if(q%6==1 && ispseudoprime(q) && ispseudoprime(q-2), listput(v,t)) %o A218046 ) %o A218046 ); %o A218046 vecsort(Vec(v),,8) %o A218046 }; \\ _Charles R Greathouse IV_, Oct 23 2012 %K A218046 nonn %O A218046 1,1 %A A218046 _Michael G. Kaarhus_, Oct 19 2012 %E A218046 Terms corrected by _Charles R Greathouse IV_, Oct 23 2012