This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218074 #33 Oct 27 2023 21:10:15 %S A218074 0,0,0,1,1,2,4,5,7,10,15,18,25,31,41,53,66,81,103,125,154,190,229,276, %T A218074 333,399,475,568,673,794,938,1102,1289,1512,1760,2050,2384,2760,3190, %U A218074 3687,4246,4882,5609,6427,7354,8412,9592,10927,12439,14130,16033,18177,20573,23256,26271 %N A218074 Expansion of Sum_{n>=1} ((n-1) * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)). %C A218074 Number of up-steps (== number of parts - 1) in all partitions of n into distinct parts (represented as increasing lists), see example. - _Joerg Arndt_, Sep 03 2014 %H A218074 Alois P. Heinz, <a href="/A218074/b218074.txt">Table of n, a(n) for n = 0..2000</a> (first 201 terms from Vincenzo Librandi) %F A218074 a(n) = A015723(n) - A000009(n) for n>0. - _Alois P. Heinz_, Sep 03 2014 %e A218074 a(8) = 7 because in the 6 partitions of 8 into distinct parts %e A218074 1: [ 1 2 5 ] %e A218074 2: [ 1 3 4 ] %e A218074 3: [ 1 7 ] %e A218074 4: [ 2 6 ] %e A218074 5: [ 3 5 ] %e A218074 6: [ 8 ] %e A218074 there are 2+2+1+1+1+0 = 7 up-steps. - _Joerg Arndt_, Sep 03 2014 %p A218074 b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, %p A218074 b(n, i-1)+`if`(i>n, 0, (p->p+[0, p[1]])(b(n-i, i-1))))) %p A218074 end: %p A218074 a:= n-> `if`(n=0, 0, (p-> p[2]-p[1])(b(n$2))): %p A218074 seq(a(n), n=0..80); # _Alois P. Heinz_, Sep 03 2014 %t A218074 max=80; s=Sum[(n-1)*q^(n*(n+1)/2)/QPochhammer[q, q, n], {n, Sqrt[max+1]}]+ O[q]^max; CoefficientList[s, q] (* _Jean-François Alcover_, Jan 17 2016 *) %o A218074 (PARI) %o A218074 N=66; q='q+O('q^N); %o A218074 gf=sum(n=1,N, (n-1)*q^(n*(n+1)/2) / prod(k=1,n, 1-q^k ) ); %o A218074 v=Vec(gf+'a0); v[1]-='a0; v /* include initial zeros */ %Y A218074 Cf. A015723, Sum_{n>=0} (n * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)). %Y A218074 Cf. A032020, Sum_{n>=0} (n! * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)). %Y A218074 Cf. A032153, Sum_{n>=1} ((n-1)! * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)). %Y A218074 Cf. A072576, Sum_{n>=0} ((n+1)! * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)). %Y A218074 Cf. A058884 (up-steps in all partitions). %K A218074 nonn %O A218074 0,6 %A A218074 _Joerg Arndt_, Oct 20 2012