This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218095 #16 Dec 29 2021 16:42:23 %S A218095 541,11301,239379,5287506,124878033,3151808478,84934607175, %T A218095 2440299822081,74564772630777,2416548374532292,82847673438018762, %U A218095 2996998457878842144,114123931204449050115,4564365783126801549858,191334572138628994076241,8390237730288860299836005 %N A218095 Number of transitive reflexive early confluent binary relations R on n labeled elements with max_{x}(|{y : xRy}|) = 5. %C A218095 R is early confluent iff (xRy and xRz) implies (yRz or zRy) for all x, y, z. %D A218095 A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany. %H A218095 Alois P. Heinz, <a href="/A218095/b218095.txt">Table of n, a(n) for n = 5..200</a> %F A218095 E.g.f.: t_5(x)-t_4(x), with t_k(x) = exp (Sum_{m=1..k} x^m/m! * t_{k-m}(x)) if k>=0 and t_k(x) = 0 else. %F A218095 a(n) = A210913(n) - A210912(n). %p A218095 t:= proc(k) option remember; `if`(k<0, 0, %p A218095 unapply(exp(add(x^m/m! *t(k-m)(x), m=1..k)), x)) %p A218095 end: %p A218095 egf:= t(5)(x)-t(4)(x): %p A218095 a:= n-> n!* coeff(series(egf, x, n+1), x, n): %p A218095 seq(a(n), n=5..20); %t A218095 m = 5; t[k_] := t[k] = If[k<0, 0, Function[x, Exp[Sum[x^m/m!*t[k-m][x], {m, 1, k}]]]] ; egf = t[m][x]-t[m-1][x]; a[n_] := n!*Coefficient[Series[egf, {x, 0, n+1}], x, n]; Table[a[n], {n, m, 20}] (* _Jean-François Alcover_, Feb 14 2014, after Maple *) %Y A218095 Column k=5 of A135313. %K A218095 nonn %O A218095 5,1 %A A218095 _Alois P. Heinz_, Oct 20 2012