This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218096 #15 Aug 02 2021 14:30:39 %S A218096 4683,137774,3794378,105494886,3068829477,94494907584,3085918099231, %T A218096 106818340013957,3913397076494906,151442406160585540, %U A218096 6177363078563029080,265028384609314768260,11934799080680963824449,563007076962063332175612,27770258520873025001499693 %N A218096 Number of transitive reflexive early confluent binary relations R on n labeled elements with max_{x}(|{y : xRy}|) = 6. %C A218096 R is early confluent iff (xRy and xRz) implies (yRz or zRy) for all x, y, z. %D A218096 A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany. %H A218096 Alois P. Heinz, <a href="/A218096/b218096.txt">Table of n, a(n) for n = 6..200</a> %F A218096 E.g.f.: t_6(x)-t_5(x), with t_k(x) = exp (Sum_{m=1..k} x^m/m! * t_{k-m}(x)) if k>=0 and t_k(x) = 0 else. %F A218096 a(n) = A210914(n) - A210913(n). %p A218096 t:= proc(k) option remember; `if`(k<0, 0, %p A218096 unapply(exp(add(x^m/m! *t(k-m)(x), m=1..k)), x)) %p A218096 end: %p A218096 egf:= t(6)(x)-t(5)(x): %p A218096 a:= n-> n!* coeff(series(egf, x, n+1), x, n): %p A218096 seq(a(n), n=6..20); %t A218096 m = 6; t[k_] := t[k] = If[k<0, 0, Function[x, Exp[Sum[x^m/m!*t[k-m][x], {m, 1, k}]]]] ; egf = t[m][x]-t[m-1][x]; a[n_] := n!*Coefficient[Series[egf, {x, 0, n+1}], x, n]; Table[a[n], {n, m, 20}] (* _Jean-François Alcover_, Feb 14 2014, after Maple *) %Y A218096 Column k=6 of A135313. %K A218096 nonn %O A218096 6,1 %A A218096 _Alois P. Heinz_, Oct 20 2012