This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218103 #23 Nov 20 2021 10:52:14 %S A218103 0,1,310,12075,267715,5287506,105494886,2185028130,47488375440, %T A218103 1087116745385,26234041133443,666937354457829,17839235553096685, %U A218103 501241620987647540,14769149279798467900,455566464561064320948,14685947990441112405726,493969048893703131221475 %N A218103 Number of transitive reflexive early confluent binary relations R on n+3 labeled elements with max_{x}(|{y : xRy}|) = n. %C A218103 R is early confluent iff (xRy and xRz) implies (yRz or zRy) for all x, y, z. %H A218103 Alois P. Heinz, <a href="/A218103/b218103.txt">Table of n, a(n) for n = 0..200</a> %F A218103 a(n) = A135313(n+3,n). %F A218103 a(n) ~ n! * n^6 / (96 * log(2)^(n+4)). - _Vaclav Kotesovec_, Nov 20 2021 %F A218103 Conjecture: For fixed k>=0, A135313(n+k,n) ~ n! * n^(2*k) / (2^(k+1) * k! * log(2)^(n+k+1)). - _Vaclav Kotesovec_, Nov 20 2021 %p A218103 t:= proc(k) option remember; `if`(k<0, 0, %p A218103 unapply(exp(add(x^m/m! *t(k-m)(x), m=1..k)), x)) %p A218103 end: %p A218103 tt:= proc(k) option remember; unapply((t(k)-t(k-1))(x), x) end: %p A218103 T:= proc(n, k) option remember; %p A218103 coeff(series(tt(k)(x), x, n+1), x, n) *n! %p A218103 end: %p A218103 a:= n-> T(n+3,n): %p A218103 seq(a(n), n=0..20); %t A218103 m = 3; f[0, _] = 1; f[k_, x_] := f[k, x] = Exp[Sum[x^m/m!*f[k-m, x], {m, 1, k}]]; (* t = A135302 *) t[0, 0] = 1; t[_, 0] = 0; t[n_, k_] := t[n, k] = SeriesCoefficient[f[k, x], {x, 0, n}]*n!; a[0] = 0; a[n_] := t[n+m, n]-t[n+m, n-1]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Feb 14 2014 *) %K A218103 nonn %O A218103 0,3 %A A218103 _Alois P. Heinz_, Oct 20 2012