This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218121 #40 Aug 13 2025 23:58:14 %S A218121 1,5,5,11,11,17,17,17,29,29,29,41,41,41,41,41,41,67,67,67,67,83,83,83, %T A218121 83,83,83,109,109,127,127,127,127,149,149,149,149,149,149,149,181,181, %U A218121 181,181,181,181,181,181,229,229,229,229,251,251,251,251,251,251,251,251 %N A218121 Numerator of c(n) defined by c(1)=1, c(2)=5/2 and for n>=3, c(n) is the minimal rational number >= c(n-1) such that there are no primes in the interval (prime(n)/c(n), prime(n+1)/c(n)). %C A218121 The sequence c(n) begins 1, 5/2, 5/2, 11/2, 11/2, 17/3, ... %C A218121 Its terms > 1 are ratios of primes. %F A218121 For n>=3, if interval (prime(n)/c(n-1), prime(n+1)/c(n-1)) is free from primes, then c(n)=c(n-1); otherwise, c(n)=prime(n+1)/prime(k), where k<=n is the maximal, such that a) prime(n+1)/prime(k)>c(n-1) and b) the open interval (prime(n)*prime(k)/prime(n+1), prime(k)) does not contain any prime. %F A218121 Note that such k exists, since, for k=1, the interval (2*prime(n)/prime(n+1),2) is free from primes. %e A218121 Intervals (2/1,3/1),(3/(5/2),5/(5/2)) are free from primes. By the condition, c(3) >= c(2) = 5/2. Since also (5/(5/2),7/(5/2)) contains no prime, then c(3)=5/2. Further, c(4) should be chosen minimal>=5/2 such that the interval (7/c(4),11/c(4)) does not contain 2 and 3 (it is clear that it contains no prime>=5). It is easy to see that the minimal c(4)=11/2, etc. %p A218121 ispfree := proc(a,b) %p A218121 local alow ; %p A218121 alow := floor(a); %p A218121 if nextprime(alow) < b then %p A218121 false; %p A218121 else %p A218121 true; %p A218121 end if; %p A218121 end proc: %p A218121 A218121c := proc(n) %p A218121 option remember; %p A218121 local k ; %p A218121 if n = 1 then %p A218121 return 1; %p A218121 elif n = 2 then %p A218121 return 5/2 ; %p A218121 else %p A218121 if ispfree(ithprime(n)/procname(n-1),ithprime(n+1)/procname(n-1)) then %p A218121 return procname(n-1) ; %p A218121 end if ; %p A218121 for k from n by -1 do %p A218121 if ispfree( ithprime(n)*ithprime(k)/ithprime(n+1),ithprime(k) ) %p A218121 and ithprime(n+1)/ithprime(k) > procname(n-1) then %p A218121 return ithprime(n+1)/ithprime(k) ; %p A218121 end if; %p A218121 end do: %p A218121 end if; %p A218121 end proc: %p A218121 A218121 := proc(n) %p A218121 numer(A218121c(n)) ; %p A218121 end proc: # _R. J. Mathar_, Dec 02 2012 %t A218121 ispfree[a_, b_] := NextPrime[Floor[a]] >= b; %t A218121 c[n_] := c[n] = Module[{k}, Which[n == 1, Return[1], n == 2, Return[5/2], True, If[ispfree[Prime[n]/c[n-1], Prime[n+1]/c[n-1]], Return[c[n-1]]]; For[k = n, True, k--, If[ispfree[Prime[n]*Prime[k]/Prime[n+1], Prime[k]] && Prime[n+1]/Prime[k] > c[n-1], Return[Prime[n+1]/Prime[k]]]]]]; %t A218121 a[n_] := Numerator[c[n]]; %t A218121 Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Dec 01 2023, after _R. J. Mathar_ *) %Y A218121 Cf. A218123 (denominator), A217871, A217689, A217691, A217833, A217884. %K A218121 nonn,frac %O A218121 1,2 %A A218121 _Vladimir Shevelev_, Oct 21 2012