This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218123 #20 Dec 05 2012 03:17:53 %S A218123 1,2,2,2,2,3,3,3,5,5,5,7,7,7,7,7,7,11,11,11,11,13,13,13,13,13,13,17, %T A218123 17,17,17,17,17,19,19,19,19,19,19,19,23,23,23,23,23,23,23,23,29,29,29, %U A218123 29,31,31,31,31,31,31,31,31,31,37,37,37,37,37,37,41,41,41,41,43,43,43,43,43,43,43,47,47 %N A218123 Denominators of terms of the sequence {c(n)} defined in A218121. %C A218123 It is easy to see that every prime is in the sequence. %p A218123 ispfree := proc(a,b) %p A218123 local alow ; %p A218123 alow := floor(a); %p A218123 if nextprime(alow) < b then %p A218123 false; %p A218123 else %p A218123 true; %p A218123 end if; %p A218123 end proc: %p A218123 A218121c := proc(n) %p A218123 option remember; %p A218123 local k ; %p A218123 if n = 1 then %p A218123 return 1; %p A218123 elif n = 2 then %p A218123 return 5/2 ; %p A218123 else %p A218123 if ispfree(ithprime(n)/procname(n-1),ithprime(n+1)/procname(n-1)) then %p A218123 return procname(n-1) ; %p A218123 end if ; %p A218123 for k from n by -1 do %p A218123 if ispfree( ithprime(n)*ithprime(k)/ithprime(n+1),ithprime(k) ) %p A218123 and ithprime(n+1)/ithprime(k) > procname(n-1) then %p A218123 return ithprime(n+1)/ithprime(k) ; %p A218123 end if; %p A218123 end do: %p A218123 end if; %p A218123 end proc: %p A218123 A218123 := proc(n) %p A218123 denom(A218121c(n)) ; %p A218123 end proc: # _R. J. Mathar_, Dec 02 2012 %Y A218123 Cf. A218121, A217871, A217689, A217691, A217833, A217884. %K A218123 nonn,frac %O A218123 1,2 %A A218123 _Vladimir Shevelev_, Oct 21 2012