This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218135 #7 Oct 21 2012 14:34:16 %S A218135 1,1,5,17,45,185,533,1921,6205,20745,69541,229585,769613,2552537, %T A218135 8515125,28340513,94357853,314301865,1046284741,3484682865, %U A218135 11602442605,38636214649,128653931093,428398492865,1426535718525,4750159951433,15817576773605,52670623373329 %N A218135 Norm of coefficients in the expansion of 1 / (1 - x - 2*I*x^2), where I^2=-1. %C A218135 The radius of convergence of g.f. equals (1 + sqrt(65) - sqrt(2)*sqrt(1+sqrt(65)))/16 = 0.30031050... %F A218135 G.f.: (1-4*x^2) / (1 - x - 8*x^2 - 4*x^3 + 16*x^4). %e A218135 G.f.: A(x) = 1 + 4*x + 17*x^2 + 80*x^3 + 369*x^4 + 1700*x^5 + 7841*x^6 +... %e A218135 The terms equal the norm of the complex coefficients in the expansion: %e A218135 1/(1-x-2*I*x^2) = 1 + x + (1 + 2*I)*x^2 + (1 + 4*I)*x^3 + (-3 + 6*I)*x^4 + (-11 + 8*I)*x^5 + (-23 + 2*I)*x^6 + (-39 - 20*I)*x^7 + (-43 - 66*I)*x^8 +... %e A218135 so that %e A218135 a(1) = 1, a(2) = 1 + 2^2, a(3) = 1 + 4^2, a(4) = 3^2 + 6^2, a(5) = 11^2 + 8^2, ... %o A218135 (PARI) {a(n)=norm(polcoeff(1/(1-x-2*I*x^2+x*O(x^n)), n))} %o A218135 for(n=0,30,print1(a(n),", ")) %Y A218135 Cf. A105309, A218134. %K A218135 nonn %O A218135 0,3 %A A218135 _Paul D. Hanna_, Oct 21 2012