cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218137 Sum of absolute values of real and imaginary parts of the coefficients in the expansion of 1 / (1 - x - I*x^2), where I^2=-1.

This page as a plain text file.
%I A218137 #6 Oct 21 2012 14:43:15
%S A218137 1,1,2,3,3,6,9,11,16,27,37,40,77,117,144,207,351,482,523,999,1522,
%T A218137 1879,2681,4560,6279,6839,12960,19799,24517,34722,59239,81793,89424,
%U A218137 168123,257547,319880,449667,769547,1065430,1169193,2180881,3350074,4173363,5823117,9996480
%N A218137 Sum of absolute values of real and imaginary parts of the coefficients in the expansion of 1 / (1 - x - I*x^2), where I^2=-1.
%H A218137 Paul D. Hanna, <a href="/A218137/b218137.txt">Table of n, a(n) for n = 0..1000</a>
%e A218137 G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 3*x^4 + 6*x^5 + 9*x^6 + 11*x^7 + 16*x^8 +...
%e A218137 The terms equal the sum of absolute values of real and imaginary parts of the coefficients in the expansion:
%e A218137 1/(1-x-I*x^2) = 1 + x + (1 + I)*x^2 + (1 + 2*I)*x^3 + 3*I*x^4 + (-2 + 4*I)*x^5 + (-5 + 4*I)*x^6 + (-9 + 2*I)*x^7 + (-13 - 3*I)*x^8 + (-15 - 12*I)*x^9 + (-12 - 25*I)*x^10 - 40*I*x^11 + (25 - 52*I)*x^12 + (65 - 52*I)*x^13 + (117 - 27*I)*x^14 + (169 + 38*I)*x^15 + (196 + 155*I)*x^16 + (158 + 324*I)*x^17 + (3 + 520*I)*x^18 + (-321 + 678*I)*x^19 + (-841 + 681*I)*x^20 +...
%e A218137 so that
%e A218137 a(1) = 1, a(2) = 1 + 1, a(3) = 1 + 2, a(4) = 3, a(5) = 2 + 4, ...
%o A218137 (PARI) {a(n)=local(Cn=polcoeff(1/(1-x-I*x^2+x*O(x^n)),n));abs(real(Cn)) + abs(imag(Cn))}
%o A218137 for(n=0,40,print1(a(n),", "))
%Y A218137 Cf. A105309, A218138.
%K A218137 nonn
%O A218137 0,3
%A A218137 _Paul D. Hanna_, Oct 21 2012