cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218138 Sum of absolute values of real and imaginary parts of the coefficients in the expansion of 1 / (1 - x - 2*I*x^2), where I^2=-1.

This page as a plain text file.
%I A218138 #5 Oct 21 2012 14:51:11
%S A218138 1,1,3,5,9,19,25,59,109,147,359,653,899,2205,3915,5715,13545,23347,
%T A218138 36229,82923,138781,228653,506215,822381,1437267,3082029,4856667,
%U A218138 9000947,18714281,28578195,56172277,113328667,167517773,349394765,684430311,977894349,2166392995
%N A218138 Sum of absolute values of real and imaginary parts of the coefficients in the expansion of 1 / (1 - x - 2*I*x^2), where I^2=-1.
%H A218138 Paul D. Hanna, <a href="/A218138/b218138.txt">Table of n, a(n) for n = 0..1000</a>
%e A218138 G.f.: A(x) = 1 + x + 3*x^2 + 5*x^3 + 9*x^4 + 19*x^5 + 25*x^6 + 59*x^7 +...
%e A218138 The terms equal the norm of the complex coefficients in the expansion:
%e A218138 1/(1-x-2*I*x^2) = 1 + x + (1 + 2*I)*x^2 + (1 + 4*I)*x^3 + (-3 + 6*I)*x^4 + (-11 + 8*I)*x^5 + (-23 + 2*I)*x^6 + (-39 - 20*I)*x^7 + (-43 - 66*I)*x^8 + (-3 - 144*I)*x^9 + (129 - 230*I)*x^10 + (417 - 236*I)*x^11 + (877 + 22*I)*x^12 +...
%e A218138 so that
%e A218138 a(1) = 1, a(2) = 1 + 2, a(3) = 1 + 4, a(4) = 3 + 6, a(5) = 11 + 8, ...
%o A218138 (PARI) {a(n)=local(Cn=polcoeff(1/(1-x-2*I*x^2+x*O(x^n)),n));abs(real(Cn)) + abs(imag(Cn))}
%o A218138 for(n=0,40,print1(a(n),", "))
%Y A218138 Cf. A218134, A218137.
%K A218138 nonn
%O A218138 0,3
%A A218138 _Paul D. Hanna_, Oct 21 2012