This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218141 #19 May 11 2014 16:40:40 %S A218141 1,1,7,3025,171798901,2436684974110751,14204422416132896951197888, %T A218141 50789872166903636182659702516635946082, %U A218141 155440114706926165785630654089245708839702615196926765,541500903058656141876322139677626107784896646583041951351456223689104719 %N A218141 a(n) = Stirling2(n^2, n). %H A218141 Paul D. Hanna, <a href="/A218141/b218141.txt">Table of n, a(n) for n = 0..25</a> %F A218141 a(n) = [x^n] Sum_{k>=0} k^(n*k) * exp(-k^n*x) * x^k / k!. %F A218141 a(n) = [x^(n^2-n)] 1 / Product_{k=1..n} (1-k*x). %F A218141 a(n) ~ n^(n^2)/n!. - _Vaclav Kotesovec_, May 11 2014 %e A218141 O.g.f.: A(x) = 1 + x + 7*x^2 + 3025*x^3 + 171798901*x^4 + 2436684974110751*x^5 +... %t A218141 Table[StirlingS2[n^2, n],{n,0,10}] (* _Vaclav Kotesovec_, May 11 2014 *) %o A218141 (PARI) {a(n)=polcoeff(sum(k=0,n,(k^n)^k*exp(-k^n*x +x*O(x^n))*x^k/k!),n)} %o A218141 (PARI) {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(n^2+1))), n^2-n)} %o A218141 (PARI) {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)} %o A218141 {a(n) = Stirling2(n^2, n)} %o A218141 for(n=0, 10, print1(a(n), ", ")) %o A218141 (Maxima) makelist(stirling2(n^2,n),n,0,30 ); /* _Martin Ettl_, Oct 21 2012 */ %Y A218141 Cf. A008277, A218142, A218143, A007820, A217913, A217914, A217915. %K A218141 nonn %O A218141 0,3 %A A218141 _Paul D. Hanna_, Oct 21 2012