cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218154 a(n) is the smallest positive integer k such that k^8 + 1 == 0 mod p, where p is the n-th prime of the form 1 + 16*b (see A094407).

This page as a plain text file.
%I A218154 #10 May 15 2019 19:28:26
%S A218154 3,8,35,3,44,2,30,36,30,151,35,27,82,16,8,27,68,40,52,62,67,104,287,
%T A218154 98,157,63,100,143,99,257,36,189,151,458,108,155,348,105,227,598,67,
%U A218154 25,460,169,250,342,24,423,286,221,627,113,107,206,279,506,630,57,39
%N A218154 a(n) is the smallest positive integer k such that k^8 + 1 == 0 mod p, where p is the n-th prime of the form 1 + 16*b (see A094407).
%H A218154 Robert Israel, <a href="/A218154/b218154.txt">Table of n, a(n) for n = 1..10000</a>
%e A218154 a(5) = 44 because 44^8+1 = 14048223625217 = 17 * 241 * 3457 * 991873 with A094407 (5) = 241.
%p A218154 P:= select(isprime, [seq(i,i=1..10000,16)]):
%p A218154 map(t -> min(map(rhs@op, [msolve(k^8+1=0,t)])), P); # _Robert Israel_, May 15 2019
%t A218154 aa = {}; Do[p = Prime[n]; If[Mod[p, 16] == 1, k = 1; While[ ! Mod[k^8 + 1, p] == 0, k++ ]; AppendTo[aa, k]], {n, 300}]; aa
%Y A218154 Cf. A094407 (primes of form 16k+1).
%K A218154 nonn
%O A218154 1,1
%A A218154 _Michel Lagneau_, Oct 22 2012