cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218234 Infinitesimal generator for padded Pascal matrix A097805 (as lower triangular matrices).

This page as a plain text file.
%I A218234 #28 Apr 30 2014 06:40:34
%S A218234 0,0,0,0,1,0,0,0,2,0,0,0,0,3,0,0,0,0,0,4,0,0,0,0,0,0,5,0,0,0,0,0,0,0,
%T A218234 6,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,9,0,0,0,
%U A218234 0,0,0,0,0,0,0,0,10,0,0,0
%N A218234 Infinitesimal generator for padded Pascal matrix A097805 (as lower triangular matrices).
%C A218234 Matrix T begins
%C A218234 0;
%C A218234 0,0;
%C A218234 0,1,0;
%C A218234 0,0,2,0;
%C A218234 0,0,0,3,0;
%C A218234 0,0,0,0,4,0;
%C A218234 Let M(t) = exp(t*T) = limit [1 + t*T/n]^n as n tends to infinity.
%C A218234 Then M(1) = the lower triangular padded Pascal matrix A097805, with inverse M(-1).
%C A218234 Given a polynomial sequence p_n(x) with p_0(x)=1 and the lowering and raising operators L and R defined by L P_n(x) = n * P_(n-1)(x) and R P_n(x) = P_(n+1)(x), the matrix T represents the action of R^2*L in the p_n(x) basis. For p_n(x) = x^n, L = D = d/dx and R = x. For p_n(x) = x^n/n!, L = DxD and R = D^(-1).
%C A218234 See A132440 for an analog and more general discussion.
%H A218234 P. Blasiak and P. Flajolet, <a href="http://arxiv.org/abs/1010.0354">Combinatorial models of creation-annihilation</a>
%H A218234 T. Copeland, <a href="http://tcjpn.wordpress.com/2012/11/29/infinigens-the-pascal-pyramid-and-the-witt-and-virasoro-algebras/">Infinitesimal Generators, the Pascal Pyramid, and the Witt and Virasoro Algebras</a>
%H A218234 T. Copeland, <a href="http://tcjpn.files.wordpress.com/2008/06/mathemagicalforestswp.pdf">Mathemagical Forests</a>
%H A218234 T. Copeland, <a href="http://tcjpn.files.wordpress.com/2011/06/addendum-to-mathemagical-forests-v2.pdf">Addendum to Mathemagical Forests</a>
%H A218234 G. Dattoli, B. Germano, M. Martinelli, and P. Ricci, <a href="http://arxiv.org/abs/1010.5934">Touchard like polynomials and generalized Stirling polynomials</a>
%H A218234 W. Lang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Lang/lang.html">Combinatorial interpretation of generalized Stirling numbers</a>
%F A218234 The matrix operation b = T*a can be characterized in several ways in terms of the coefficients a(n) and b(n), their o.g.f.s A(x) and B(x), or e.g.f.s EA(x) and EB(x):
%F A218234   1) b(0) = 0, b(1) = 0, b(n) = (n-1) * a(n-1),
%F A218234   2) B(x) = x^2D A(x)= x (xDx)(1/x)A(x) = x^2 * Lag(1,-:xD:) A(x)/x , or
%F A218234   3) EB(x) = D^(-1)xD  EA(x),
%F A218234   where D is the derivative w.r.t. x, (D^(-1)x^j/j!) = x^(j+1)/(j+1)!, (:xD:)^j = x^j*D^j, and Lag(n,x) are the Laguerre polynomials A021009.
%F A218234 So the exponentiated operator can be characterized as
%F A218234   4) exp(t*T) A(x) = exp(t*x^2D) A(x) = x exp(t*xDx)(1/x)A(x)
%F A218234      = x [sum(n=0,1,...) (t*x)^n * Lag(n,-:xD:)] A(x)/x
%F A218234      = x [exp{[t*u/(1-t*u)]*:xD:} / (1-t*u) ] A(x)/x (eval. at u=x)
%F A218234      = A[x/(1-t*x)], a special Moebius or linear fractional trf.,
%F A218234   5) exp(t*T) EA(x) =  D^(-1) exp(t*x)D EA(x), a shifted Euler trf.
%F A218234      for an e.g.f., or
%F A218234   6) [exp(t*T) * a]_n = [M(t) * a]_n
%F A218234      = [sum(k=0,...,n-1) binomial(n-1,k)*  t^(n-1-k) * a(k+1)] with [M(t) * a]_0 = a_0
%F A218234 For generalizations and more on the operator x^2D, see A132440 and the references therein and above, and A094638.
%t A218234 Table[PadLeft[{n-1, 0}, n+1], {n, 0, 12}]  // Flatten (* _Jean-François Alcover_, Apr 30 2014 *)
%K A218234 easy,tabl,nonn
%O A218234 0,9
%A A218234 _Tom Copeland_, Oct 24 2012