cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218293 Number of standard Young tableaux with shapes corresponding to partitions into distinct parts.

This page as a plain text file.
%I A218293 #28 Feb 18 2015 05:19:40
%S A218293 1,1,1,3,4,10,31,70,190,561,2191,6226,22683,74152,283349,1211354,
%T A218293 4572672,18844177,77585825,327472752,1418056071,7083303437,
%U A218293 31251988918,153456264178,723293387594,3596567095155,17360616601051,89955643932801,486526881887485,2551613423040841,14029592127656040,76756835252971657,428044848852530252
%N A218293 Number of standard Young tableaux with shapes corresponding to partitions into distinct parts.
%H A218293 Alois P. Heinz, <a href="/A218293/b218293.txt">Table of n, a(n) for n = 0..120</a>
%H A218293 Wikipedia, <a href="http://en.wikipedia.org/wiki/Young_tableau">Young tableau</a>
%p A218293 h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
%p A218293       add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
%p A218293     end:
%p A218293 g:= proc(n, i, l) local s; s:=i*(i+1)/2;
%p A218293       `if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0,
%p A218293        g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i]))))
%p A218293     end:
%p A218293 a:= n-> g(n, n, []):
%p A218293 seq(a(n), n=0..40);  # _Alois P. Heinz_, Nov 08 2012
%t A218293 h[l_List] := Module[{n=Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j + Sum[ If[ l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_List] := Module[{s=i*(i+1)/2}, If[n == s, h[Join[l, Table[i-j, {j, 0, i-1}]]], If[n > s, 0, g[n, i-1, l] + If[i>n, 0, g[n-i, i-1, Append[l, i]]]]]]; a[n_] := g[n, n, {}]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Feb 18 2015, after _Alois P. Heinz_ *)
%Y A218293 Cf. A000085 (standard Young tableaux for all shapes).
%Y A218293 Diagonal of A219272, row sums of A219274, A219311. - _Alois P. Heinz_, Nov 17 2012
%Y A218293 Cf. A225121 (tableaux with shapes corresponding to partitions into distinct parts with minimal difference 2).
%K A218293 nonn
%O A218293 0,4
%A A218293 _Joerg Arndt_, Oct 25 2012