This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218298 #10 Nov 03 2012 13:52:55 %S A218298 1,1,6,37,274,2154,17896,153981,1361702,12297022,112935652,1051549970, %T A218298 9903781784,94183796404,903135799468,8722680673357,84776578857670, %U A218298 828531289070582,8137311780855076,80272417524869462,795011346686319212,7902010696389037900 %N A218298 G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n*A(x)^n/n * Sum_{k=0..2*n} A084606(n,k)^2 * x^k * A(x)^(2*k) ), where A084606(n,k) = [x^k] (1 + 2*x + 2*x^2)^n. %F A218298 G.f. satisfies: %F A218298 (1) A(x) = (1 + x*A(x)^2)*(1 + 4*x^3*A(x)^6)*(1 + 4*x^4*A(x)^8)/(1 - 2*x^2*A(x)^4)^2. %F A218298 (2) A(x) = sqrt( (1/x)*Series_Reversion( x*(1 - 2*x^2)^4 / ((1 + x)*(1 + 4*x^3)*(1 + 4*x^4))^2 ) ). %e A218298 G.f.: A(x) = 1 + x + 6*x^2 + 37*x^3 + 274*x^4 + 2154*x^5 + 17896*x^6 +... %e A218298 Let A = g.f. A(x), then the logarithm of the g.f. equals the series: %e A218298 log(A(x)) = (1 + 2^2*x*A^2 + 2^2*x^2*A^4)*x*A + %e A218298 (1 + 4^2*x*A^2 + 8^2*x^2*A^4 + 8^2*x^3*A^6 + 4^2*x^4*A^8)*x^2*A^2/2 + %e A218298 (1 + 6^2*x*A^2 + 18^2*x^2*A^4 + 32^2*x^3*A^6 + 36^2*x^4*A^8 + 24^2*x^5*A^10 + 8^2*x^6*A^12)*x^3*A^3/3 + %e A218298 (1 + 8^2*x*A^2 + 32^2*x^2*A^4 + 80^2*x^3*A^6 + 136^2*x^4*A^8 + 160^2*x^5*A^10 + 128^2*x^6*A^12 + 64^2*x^7*A^14 + 16^2*x^8*A^16)*x^4*A^4/4 +... %e A218298 which involves the squares of the trinomial coefficients A084606(n,k): %e A218298 1; %e A218298 1, 2, 2; %e A218298 1, 4, 8, 8, 4; %e A218298 1, 6, 18, 32, 36, 24, 8; %e A218298 1, 8, 32, 80, 136, 160, 128, 64, 16; %e A218298 1, 10, 50, 160, 360, 592, 720, 640, 400, 160, 32; ... %o A218298 (PARI) /* G.f. A(x) using the squares of the trinomial coefficients A084606: */ %o A218298 {A084606(n, k)=polcoeff((1 + 2*x + 2*x^2)^n, k)} %o A218298 {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, 2*m, A084606(m, k)^2*x^k*(A+x*O(x^n))^(2*k))*x^m*A^m/m))); polcoeff(A, n)} %o A218298 for(n=0,20,print1(a(n),", ")) %o A218298 (PARI) {a(n)=local(A=sqrt(serreverse( x*(1 - 2*x^2)^4 / ((1 + x)*(1 + 4*x^3)*(1 + 4*x^4 +x*O(x^n)))^2)/x));polcoeff(A,n)} %o A218298 for(n=0,20,print1(a(n),", ")) %Y A218298 Cf. A218299, A218619, A200475, A084606. %K A218298 nonn %O A218298 0,3 %A A218298 _Paul D. Hanna_, Oct 27 2012