cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218321 Number of lattice paths from (0,0) to (n,n) which do not go above the diagonal x=y using steps (1,k), (k,1) with k>=0.

This page as a plain text file.
%I A218321 #25 Sep 01 2022 04:58:44
%S A218321 1,2,8,39,212,1230,7458,46689,299463,1957723,12996879,87383754,
%T A218321 593794311,4071599216,28136612051,195756911831,1370068168916,
%U A218321 9639404836227,68138551870047,483682445360748,3446462104490724,24642148415136556,176743014104068411
%N A218321 Number of lattice paths from (0,0) to (n,n) which do not go above the diagonal x=y using steps (1,k), (k,1) with k>=0.
%H A218321 Alois P. Heinz, <a href="/A218321/b218321.txt">Table of n, a(n) for n = 0..500</a>
%H A218321 Alois P. Heinz, <a href="/A218321/a218321.txt">Maple program for A218321</a>
%F A218321 G.f.: (sqrt(x^4+4*x^3+2*x^2-8*x+1)+x^2+1-sqrt(2*(x^4+2*x^3-6*x^2-4*x+1+(x^2+1)*sqrt(x^4+4*x^3+2*x^2-8*x+1))))/(4*x^2). - _Mark van Hoeij_, Apr 17 2013
%e A218321 a(2) = 8: [(0,0),(1,0),(1,1),(2,1),(2,2)], [(0,0),(1,0),(1,1),(2,2)], [(0,0),(1,0),(2,0),(2,1),(2,2)], [(0,0),(1,0),(2,1),(2,2)], [(0,0),(1,0),(2,2)], [(0,0),(1,1),(2,1),(2,2)], [(0,0),(1,1),(2,2)], [(0,0),(2,1),(2,2)].
%p A218321 b:= proc(x, y) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
%p A218321       add(b(x-i, y-1), i=0..x) +add(b(x-1, y-j), j=0..y) -b(x-1,y-1)))
%p A218321     end:
%p A218321 a:= n-> b(n, n):
%p A218321 seq(a(n), n=0..30);
%p A218321 # second Maple program gives series:
%p A218321 series(RootOf(x^4*T^4-(x^2+1)*x^2*T^3-(x^2-2*x-2)*x*T^2-(x^2+1)*T+1, T), x=0, 31);  # _Mark van Hoeij_, Apr 17 2013
%t A218321 b[x_, y_] := b[x, y] = If[y < 0 || y > x, 0, If[x == 0, 1, Sum[b[x - i, y - 1], {i, 0, x}] + Sum[b[x - 1, y - j], {j, 0, y}] - b[x - 1, y - 1]]];
%t A218321 a[n_] := b[n, n];
%t A218321 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Sep 01 2022, after _Alois P. Heinz_ *)
%Y A218321 Cf. A082582, A168592, A263316.
%K A218321 nonn
%O A218321 0,2
%A A218321 _Alois P. Heinz_, Oct 25 2012