This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218336 #23 Feb 16 2025 08:33:18 %S A218336 1,2,5,10,3,4,6,8,12,15,20,24,30,40,60,120,7,14,19,35,38,70,95,133, %T A218336 190,266,665,1330,16,48,61,80,122,183,240,244,305,366,488,610,732,915, %U A218336 976,1220,1464,1830,2440,2928,3660,4880,7320,14640,25,50,3221,6442 %N A218336 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(11) listed in ascending order. %H A218336 Alois P. Heinz, <a href="/A218336/b218336.txt">Rows n = 1..23, flattened</a> %H A218336 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IrreduciblePolynomial.html">Irreducible Polynomial</a> %H A218336 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PolynomialOrder.html">Polynomial Order</a> %F A218336 T(n,k) = k-th smallest element of M(n) = {d : d|(11^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}. %e A218336 Triangle begins: %e A218336 1, 2, 5, 10; %e A218336 3, 4, 6, 8, 12, 15, 20, 24, 30, 40, ... %e A218336 7, 14, 19, 35, 38, 70, 95, 133, 190, 266, ... %e A218336 16, 48, 61, 80, 122, 183, 240, 244, 305, 366, ... %e A218336 25, 50, 3221, 6442, 16105, 32210, 80525, 161050; %e A218336 ... %p A218336 with(numtheory): %p A218336 M:= proc(n) M(n):= divisors(11^n-1) minus U(n-1) end: %p A218336 U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end: %p A218336 T:= n-> sort([M(n)[]])[]: %p A218336 seq(T(n), n=1..5); %t A218336 M[n_] := M[n] = Divisors[11^n - 1] ~Complement~ U[n-1]; %t A218336 U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]]; %t A218336 T[n_] := Sort[M[n]]; %t A218336 Table[T[n], {n, 1, 5}] // Flatten (* _Jean-François Alcover_, Feb 12 2023, after _Alois P. Heinz_ *) %Y A218336 Column k=5 of A212737. %Y A218336 Last elements of rows give: A024127. %Y A218336 Column k=1 gives: A218359. %Y A218336 Row lengths are A212957(n,11). %K A218336 nonn,look,tabf %O A218336 1,2 %A A218336 _Alois P. Heinz_, Oct 26 2012