cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218337 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(13) listed in ascending order.

This page as a plain text file.
%I A218337 #25 Feb 16 2025 08:33:18
%S A218337 1,2,3,4,6,12,7,8,14,21,24,28,42,56,84,168,9,18,36,61,122,183,244,366,
%T A218337 549,732,1098,2196,5,10,15,16,17,20,30,34,35,40,48,51,60,68,70,80,85,
%U A218337 102,105,112,119,120,136,140,170,204,210,238,240,255,272,280,336
%N A218337 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(13) listed in ascending order.
%H A218337 Alois P. Heinz, <a href="/A218337/b218337.txt">Rows n = 1..20, flattened</a>
%H A218337 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IrreduciblePolynomial.html">Irreducible Polynomial</a>
%H A218337 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PolynomialOrder.html">Polynomial Order</a>
%F A218337 T(n,k) = k-th smallest element of M(n) = {d : d|(13^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}.
%e A218337 Triangle begins:
%e A218337 :     1,     2,     3,      4,      6,     12;
%e A218337 :     7,     8,    14,     21,     24,     28,  42,  56,  84, 168;
%e A218337 :     9,    18,    36,     61,    122,    183, 244, 366, 549, ...
%e A218337 :     5,    10,    15,     16,     17,     20,  30,  34,  35, ...
%e A218337 : 30941, 61882, 92823, 123764, 185646, 371292;
%p A218337 with(numtheory):
%p A218337 M:= proc(n) M(n):= divisors(13^n-1) minus U(n-1) end:
%p A218337 U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
%p A218337 T:= n-> sort([M(n)[]])[]:
%p A218337 seq(T(n), n=1..5);
%t A218337 M[n_] := Divisors[13^n-1] ~Complement~ U[n-1]; U[n_] := If[n == 0, {}, M[n] ~Union~  U[n-1]]; T[n_] := Sort[M[n]]; Table[T[n], {n, 1, 5}] // Flatten (* _Jean-François Alcover_, Feb 13 2015, after _Alois P. Heinz_ *)
%Y A218337 Column k=6 of A212737.
%Y A218337 Column k=1 gives: A218360.
%Y A218337 Row lengths are A212957(n,13).
%K A218337 nonn,look,tabf
%O A218337 1,2
%A A218337 _Alois P. Heinz_, Oct 26 2012