This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218337 #25 Feb 16 2025 08:33:18 %S A218337 1,2,3,4,6,12,7,8,14,21,24,28,42,56,84,168,9,18,36,61,122,183,244,366, %T A218337 549,732,1098,2196,5,10,15,16,17,20,30,34,35,40,48,51,60,68,70,80,85, %U A218337 102,105,112,119,120,136,140,170,204,210,238,240,255,272,280,336 %N A218337 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(13) listed in ascending order. %H A218337 Alois P. Heinz, <a href="/A218337/b218337.txt">Rows n = 1..20, flattened</a> %H A218337 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IrreduciblePolynomial.html">Irreducible Polynomial</a> %H A218337 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PolynomialOrder.html">Polynomial Order</a> %F A218337 T(n,k) = k-th smallest element of M(n) = {d : d|(13^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}. %e A218337 Triangle begins: %e A218337 : 1, 2, 3, 4, 6, 12; %e A218337 : 7, 8, 14, 21, 24, 28, 42, 56, 84, 168; %e A218337 : 9, 18, 36, 61, 122, 183, 244, 366, 549, ... %e A218337 : 5, 10, 15, 16, 17, 20, 30, 34, 35, ... %e A218337 : 30941, 61882, 92823, 123764, 185646, 371292; %p A218337 with(numtheory): %p A218337 M:= proc(n) M(n):= divisors(13^n-1) minus U(n-1) end: %p A218337 U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end: %p A218337 T:= n-> sort([M(n)[]])[]: %p A218337 seq(T(n), n=1..5); %t A218337 M[n_] := Divisors[13^n-1] ~Complement~ U[n-1]; U[n_] := If[n == 0, {}, M[n] ~Union~ U[n-1]]; T[n_] := Sort[M[n]]; Table[T[n], {n, 1, 5}] // Flatten (* _Jean-François Alcover_, Feb 13 2015, after _Alois P. Heinz_ *) %Y A218337 Column k=6 of A212737. %Y A218337 Column k=1 gives: A218360. %Y A218337 Row lengths are A212957(n,13). %K A218337 nonn,look,tabf %O A218337 1,2 %A A218337 _Alois P. Heinz_, Oct 26 2012