This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218338 #24 Feb 16 2025 08:33:18 %S A218338 1,2,4,8,16,3,6,9,12,18,24,32,36,48,72,96,144,288,307,614,1228,2456, %T A218338 4912,5,10,15,20,29,30,40,45,58,60,64,80,87,90,116,120,145,160,174, %U A218338 180,192,232,240,261,290,320,348,360,435,464,480,522,576,580,696,720 %N A218338 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(17) listed in ascending order. %H A218338 Alois P. Heinz, <a href="/A218338/b218338.txt">Rows n = 1..19, flattened</a> %H A218338 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IrreduciblePolynomial.html">Irreducible Polynomial</a> %H A218338 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PolynomialOrder.html">Polynomial Order</a> %F A218338 T(n,k) = k-th smallest element of M(n) = {d : d|(17^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}. %e A218338 Triangle begins: %e A218338 1, 2, 4, 8, 16; %e A218338 3, 6, 9, 12, 18, 24, 32, 36, 48, 72, ... %e A218338 307, 614, 1228, 2456, 4912; %e A218338 5, 10, 15, 20, 29, 30, 40, 45, 58, 60, ... %e A218338 88741, 177482, 354964, 709928, 1419856; %p A218338 with(numtheory): %p A218338 M:= proc(n) M(n):= divisors(17^n-1) minus U(n-1) end: %p A218338 U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end: %p A218338 T:= n-> sort([M(n)[]])[]: %p A218338 seq(T(n), n=1..5); %t A218338 M[n_] := M[n] = Divisors[17^n-1] ~Complement~ U[n-1]; %t A218338 U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]]; %t A218338 T[n_] := Sort[M[n]]; %t A218338 Table[T[n], {n, 1, 5}] // Flatten (* _Jean-François Alcover_, Feb 12 2023, after _Alois P. Heinz_ *) %Y A218338 Column k=7 of A212737. %Y A218338 Column k=1 gives: A218361. %Y A218338 Row lengths are A212957(n,17). %K A218338 nonn,tabf,look %O A218338 1,2 %A A218338 _Alois P. Heinz_, Oct 26 2012