This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218339 #26 Feb 18 2025 08:12:59 %S A218339 1,2,3,6,9,18,4,5,8,10,12,15,20,24,30,36,40,45,60,72,90,120,180,360, %T A218339 27,54,127,254,381,762,1143,2286,3429,6858,16,48,80,144,181,240,362, %U A218339 543,720,724,905,1086,1448,1629,1810,2172,2715,2896,3258,3620,4344,5430 %N A218339 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(19) listed in ascending order. %H A218339 Alois P. Heinz, <a href="/A218339/b218339.txt">Rows n = 1..18, flattened</a> %H A218339 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IrreduciblePolynomial.html">Irreducible Polynomial</a> %H A218339 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PolynomialOrder.html">Polynomial Order</a> %F A218339 T(n,k) = k-th smallest element of M(n) = {d : d|(19^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}. %e A218339 Triangle begins: %e A218339 1, 2, 3, 6, 9, 18; %e A218339 4, 5, 8, 10, 12, 15, 20, 24, 30, 36, 40, ... %e A218339 27, 54, 127, 254, 381, 762, 1143, 2286, 3429, 6858; %e A218339 16, 48, 80, 144, 181, 240, 362, 543, 720, 724, 905, ... %e A218339 151, 302, 453, 906, 911, 1359, 1822, 2718, 2733, 5466, 8199, ... %e A218339 ... %p A218339 with(numtheory): %p A218339 M:= proc(n) M(n):= divisors(19^n-1) minus U(n-1) end: %p A218339 U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end: %p A218339 T:= n-> sort([M(n)[]])[]: %p A218339 seq(T(n), n=1..5); %t A218339 M[n_] := M[n] = Divisors[19^n-1] ~Complement~ U[n-1]; %t A218339 U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]]; %t A218339 T[n_] := Sort[M[n]]; %t A218339 Table[T[n], {n, 1, 5}] // Flatten (* _Jean-François Alcover_, Feb 12 2023, after _Alois P. Heinz_ *) %Y A218339 Column k=8 of A212737. %Y A218339 Column k=1 gives: A218362. %Y A218339 Row lengths are A212957(n,19). %K A218339 nonn,tabf,look %O A218339 1,2 %A A218339 _Alois P. Heinz_, Oct 26 2012