This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218340 #25 Feb 16 2025 08:33:18 %S A218340 1,2,11,22,3,4,6,8,12,16,24,33,44,48,66,88,132,176,264,528,7,14,77,79, %T A218340 154,158,553,869,1106,1738,6083,12166,5,10,15,20,30,32,40,53,55,60,80, %U A218340 96,106,110,120,159,160,165,212,220,240,265,318,330,352,424,440 %N A218340 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(23) listed in ascending order. %H A218340 Alois P. Heinz, <a href="/A218340/b218340.txt">Rows n = 1..17, flattened</a> %H A218340 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IrreduciblePolynomial.html">Irreducible Polynomial</a> %H A218340 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PolynomialOrder.html">Polynomial Order</a> %F A218340 T(n,k) = k-th smallest element of M(n) = {d : d|(23^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}. %e A218340 Triangle begins: %e A218340 1, 2, 11, 22; %e A218340 3, 4, 6, 8, 12, 16, 24, 33, 44, ... %e A218340 7, 14, 77, 79, 154, 158, 553, 869, 1106, ... %e A218340 5, 10, 15, 20, 30, 32, 40, 53, 55, ... %e A218340 292561, 585122, 3218171, 6436342; %e A218340 ... %p A218340 with(numtheory): %p A218340 M:= proc(n) M(n):= divisors(23^n-1) minus U(n-1) end: %p A218340 U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end: %p A218340 T:= n-> sort([M(n)[]])[]: %p A218340 seq(T(n), n=1..5); %t A218340 M[n_] := M[n] = Divisors[23^n-1] ~Complement~ U[n-1]; %t A218340 U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]]; %t A218340 T[n_] := Sort[M[n]]; %t A218340 Table[T[n], {n, 1, 5}] // Flatten (* _Jean-François Alcover_, Feb 12 2023, after _Alois P. Heinz_ *) %Y A218340 Column k=9 of A212737. %Y A218340 Column k=1 gives: A218363. %Y A218340 Row lengths are A212957(n,23). %K A218340 nonn,tabf,look %O A218340 1,2 %A A218340 _Alois P. Heinz_, Oct 26 2012