This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218341 #23 Feb 18 2025 08:13:29 %S A218341 1,2,4,7,14,28,3,5,6,8,10,12,15,20,21,24,30,35,40,42,56,60,70,84,105, %T A218341 120,140,168,210,280,420,840,13,26,52,67,91,134,182,268,364,469,871, %U A218341 938,1742,1876,3484,6097,12194,24388,16,48,80,112,240,336,421,560 %N A218341 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(29) listed in ascending order. %H A218341 Alois P. Heinz, <a href="/A218341/b218341.txt">Rows n = 1..16, flattened</a> %H A218341 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IrreduciblePolynomial.html">Irreducible Polynomial</a> %H A218341 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PolynomialOrder.html">Polynomial Order</a> %F A218341 T(n,k) = k-th smallest element of M(n) = {d : d|(29^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}. %e A218341 Triangle begins: %e A218341 1, 2, 4, 7, 14, 28; %e A218341 3, 5, 6, 8, 10, 12, 15, ... %e A218341 13, 26, 52, 67, 91, 134, 182, ... %e A218341 16, 48, 80, 112, 240, 336, 421, ... %e A218341 732541, 1465082, 2930164, 5127787, 10255574, 20511148; %e A218341 ... %p A218341 with(numtheory): %p A218341 M:= proc(n) M(n):= divisors(29^n-1) minus U(n-1) end: %p A218341 U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end: %p A218341 T:= n-> sort([M(n)[]])[]: %p A218341 seq(T(n), n=1..5); %t A218341 M[n_] := M[n] = Divisors[29^n-1] ~Complement~ U[n-1]; %t A218341 U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]]; %t A218341 T[n_] := Sort[M[n]]; %t A218341 Table[T[n], {n, 1, 5}] // Flatten (* _Jean-François Alcover_, Feb 12 2023, after _Alois P. Heinz_ *) %Y A218341 Column k=10 of A212737. %Y A218341 Column k=1 gives: A218364. %Y A218341 Row lengths are A212957(n,29). %K A218341 nonn,tabf,look %O A218341 1,2 %A A218341 _Alois P. Heinz_, Oct 26 2012