A218342 Decimal expansion of e^-gamma * Product_(1 - 1/(p^3 - p^2 - p + 1)) where the product is over all primes p.
3, 4, 5, 3, 7, 2, 0, 6, 4, 1, 0, 2, 9, 8, 6, 4, 8, 7, 6, 7, 3, 4, 9, 6, 8, 2, 7, 8, 9, 1, 0, 3, 3, 7, 1, 0, 7, 2, 0, 6, 6, 5, 6, 2, 5, 3, 8, 0, 4, 1, 5, 8, 7, 2, 0, 5, 6, 0, 0, 4, 8, 9, 6, 6, 2, 5, 2, 6, 5, 3, 1, 9, 5, 0, 2, 2, 5, 1, 8, 6, 6, 9, 4, 7, 9, 0, 9, 1, 1, 6, 1, 3, 9, 2, 2, 7, 6, 3, 9, 6, 9, 6, 4, 4, 7
Offset: 0
Examples
0.34537206410298648767349682789103371072066562538041...
Links
- Paul Erdős, Carl Pomerance, and Eric Schmutz, Carmichael's lambda function, Acta Arithmetica 58 (1991), pp. 363-385.
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 156 (constant C9).
- Sungjin Kim, On the order of 'a' modulo 'n' on average, International Journal of Number Theory, Vol. 12, No. 8 (2016), pp. 2073-2080; arXiv preprint, arXiv:1509.03768 [math.NT], 2015-2016.
- Pär Kurlberg and Carl Pomerance, On a problem of Arnold: the average multiplicative order of a given integer, Algebra & Number Theory, Vol. 7, No. 4 (2013), pp. 981-999; arXiv preprint, arXiv:1108.5209 [math.NT], 2012.
- R. J. Mathar, Hardy-Littlewood constants embedded into infinite products over all positive integers, arXiv:0903.2514 [math.NT], 2009-2011; Eq. (106) page 17.
Programs
-
Mathematica
$MaxExtraPrecision = 200; m0 = 1000; dm = 200; digits = 105; Clear[f]; f[m_] := f[m] = (slog = Normal[Series[Log[1 - 1/((p - 1)^2*(p + 1))], {p, Infinity, m}]]; Exp[slog] /. Power[p, n_] -> PrimeZetaP[-n] // N[#, digits + 10] &); f[m = m0]; Print[m, " ", f[m]]; f[m = m + dm]; While[Print[m, " ", f[m]]; RealDigits[f[m], 10, digits + 5] != RealDigits[f[m - dm], 10, digits + 5], m = m + dm]; B = Exp[-EulerGamma]*f[m]; RealDigits[B, 10, digits] // First (* Jean-François Alcover, Sep 20 2015 *)
-
PARI
exp(-Euler) * prodeulerrat(1-1/((p-1)^2*(p+1))) \\ Amiram Eldar, Mar 09 2021
Extensions
More digits from Jean-François Alcover, Sep 20 2015
Comments