cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218342 Decimal expansion of e^-gamma * Product_(1 - 1/(p^3 - p^2 - p + 1)) where the product is over all primes p.

Original entry on oeis.org

3, 4, 5, 3, 7, 2, 0, 6, 4, 1, 0, 2, 9, 8, 6, 4, 8, 7, 6, 7, 3, 4, 9, 6, 8, 2, 7, 8, 9, 1, 0, 3, 3, 7, 1, 0, 7, 2, 0, 6, 6, 5, 6, 2, 5, 3, 8, 0, 4, 1, 5, 8, 7, 2, 0, 5, 6, 0, 0, 4, 8, 9, 6, 6, 2, 5, 2, 6, 5, 3, 1, 9, 5, 0, 2, 2, 5, 1, 8, 6, 6, 9, 4, 7, 9, 0, 9, 1, 1, 6, 1, 3, 9, 2, 2, 7, 6, 3, 9, 6, 9, 6, 4, 4, 7
Offset: 0

Views

Author

Keywords

Comments

The average order of Carmichael's lambda function is x/log x * exp(B log log x/log log log x (1 + o(1))), where B is this constant. Under the GRH, the same applies to A036391(n)/n, the sum of the orders mod n of the numbers coprime to n divided by n.

Examples

			0.34537206410298648767349682789103371072066562538041...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 200; m0 = 1000; dm = 200; digits = 105; Clear[f]; f[m_] := f[m] = (slog = Normal[Series[Log[1 - 1/((p - 1)^2*(p + 1))], {p, Infinity, m}]]; Exp[slog] /. Power[p, n_] -> PrimeZetaP[-n] // N[#, digits + 10] &); f[m = m0]; Print[m, " ", f[m]]; f[m = m + dm]; While[Print[m, " ", f[m]]; RealDigits[f[m], 10, digits + 5] !=  RealDigits[f[m - dm], 10, digits + 5], m = m + dm]; B = Exp[-EulerGamma]*f[m]; RealDigits[B, 10, digits] // First (* Jean-François Alcover, Sep 20 2015 *)
  • PARI
    exp(-Euler) * prodeulerrat(1-1/((p-1)^2*(p+1))) \\ Amiram Eldar, Mar 09 2021

Extensions

More digits from Jean-François Alcover, Sep 20 2015