This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218355 #24 Feb 25 2020 05:47:03 %S A218355 1,0,1,0,1,1,1,1,1,3,1,3,1,5,2,6,2,8,3,9,5,12,7,13,9,16,13,19,17,22, %T A218355 23,25,29,30,37,35,46,41,58,49,70,57,85,68,103,81,123,97,145,115,172, %U A218355 139,201,164,236,197,274,234,318,280,368,330,425,394,488,463,561,548,644,642,738,755,844,879,965,1029 %N A218355 Number of partitions into distinct parts where all differences between consecutive parts are odd and the minimal part is even. %C A218355 Parts are even, odd, even, odd, ... . %H A218355 Alois P. Heinz, <a href="/A218355/b218355.txt">Table of n, a(n) for n = 0..10000</a> %F A218355 G.f.: sum(n>=0, x^((n+1)*(n+4)/2) / prod(k=1..n+1, 1-x^(2*k) ) ). %F A218355 a(n) = A179080(n) - A179049(n). %e A218355 The a(23) = 13 such partitions of 23 are: %e A218355 [ 1] 2 3 18 %e A218355 [ 2] 2 5 16 %e A218355 [ 3] 2 7 14 %e A218355 [ 4] 2 9 12 %e A218355 [ 5] 2 21 %e A218355 [ 6] 4 5 14 %e A218355 [ 7] 4 7 12 %e A218355 [ 8] 4 9 10 %e A218355 [ 9] 4 19 %e A218355 [10] 6 7 10 %e A218355 [11] 6 17 %e A218355 [12] 8 15 %e A218355 [13] 10 13 %p A218355 b:= proc(n, i) option remember; `if`(n=0, 1, %p A218355 `if`(i>n, 0, b(n, i+2)+b(n-i, i+1))) %p A218355 end: %p A218355 a:= n-> b(n, 2): %p A218355 seq(a(n), n=0..100); # _Alois P. Heinz_, Nov 08 2012; revised Feb 24 2020 %t A218355 b[n_, i_, t_] := b[n, i, t] = If[n==0, 1-Mod[t, 2], If[i<1, 0, b[n, i-1, t] + If[i <= n && Mod[i, 2] != t, b[n-i, i-1, Mod[i, 2]], 0]]]; a[n_] := If[n==0, 1, Sum[ b[n-i, i-1, Mod[i, 2]], {i, 1, n}]]; Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Jul 02 2015, after _Alois P. Heinz_ *) %o A218355 (PARI) %o A218355 N=76; x='x+O('x^N); %o A218355 gf179080 = sum(n=0, N, x^(n*(n+1)/2) / prod(k=1, n+1, 1-x^(2*k) ) ); %o A218355 gf179049 = sum(n=0, N, x^(n*(n+1)/2) / prod(k=1, n, 1-x^(2*k) ) ); %o A218355 gf = gf179080 - gf179049; %o A218355 Vec( gf ) %o A218355 (PARI) N=75; x='x+O('x^N); gf = sum(n=0, N, x^((n+1)*(n+4)/2) / prod(k=1, n+1, 1-x^(2*k) ) ); v2=Vec( gf ) %o A218355 (Sage) # After _Alois P. Heinz_. %o A218355 def A218355(n): %o A218355 @cached_function %o A218355 def h(n, k): %o A218355 if n == 0: return 1 %o A218355 if k > n: return 0 %o A218355 return h(n, k+2) + h(n-k, k+1) %o A218355 return h(n, 2) %o A218355 print([A218355(n) for n in range(76)]) # _Peter Luschny_, Feb 25 2020 %Y A218355 Cf. A179049 (parts are odd, even, odd, even, ...). %K A218355 nonn %O A218355 0,10 %A A218355 _Joerg Arndt_, Oct 27 2012