cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218355 Number of partitions into distinct parts where all differences between consecutive parts are odd and the minimal part is even.

This page as a plain text file.
%I A218355 #24 Feb 25 2020 05:47:03
%S A218355 1,0,1,0,1,1,1,1,1,3,1,3,1,5,2,6,2,8,3,9,5,12,7,13,9,16,13,19,17,22,
%T A218355 23,25,29,30,37,35,46,41,58,49,70,57,85,68,103,81,123,97,145,115,172,
%U A218355 139,201,164,236,197,274,234,318,280,368,330,425,394,488,463,561,548,644,642,738,755,844,879,965,1029
%N A218355 Number of partitions into distinct parts where all differences between consecutive parts are odd and the minimal part is even.
%C A218355 Parts are even, odd, even, odd, ... .
%H A218355 Alois P. Heinz, <a href="/A218355/b218355.txt">Table of n, a(n) for n = 0..10000</a>
%F A218355 G.f.: sum(n>=0, x^((n+1)*(n+4)/2) / prod(k=1..n+1, 1-x^(2*k) ) ).
%F A218355 a(n) = A179080(n) - A179049(n).
%e A218355 The a(23) = 13 such partitions of 23 are:
%e A218355 [ 1]  2 3 18
%e A218355 [ 2]  2 5 16
%e A218355 [ 3]  2 7 14
%e A218355 [ 4]  2 9 12
%e A218355 [ 5]  2 21
%e A218355 [ 6]  4 5 14
%e A218355 [ 7]  4 7 12
%e A218355 [ 8]  4 9 10
%e A218355 [ 9]  4 19
%e A218355 [10]  6 7 10
%e A218355 [11]  6 17
%e A218355 [12]  8 15
%e A218355 [13]  10 13
%p A218355 b:= proc(n, i) option remember; `if`(n=0, 1,
%p A218355       `if`(i>n, 0, b(n, i+2)+b(n-i, i+1)))
%p A218355     end:
%p A218355 a:= n-> b(n, 2):
%p A218355 seq(a(n), n=0..100);  # _Alois P. Heinz_, Nov 08 2012; revised Feb 24 2020
%t A218355 b[n_, i_, t_] := b[n, i, t] = If[n==0, 1-Mod[t, 2], If[i<1, 0, b[n, i-1, t] + If[i <= n && Mod[i, 2] != t, b[n-i, i-1, Mod[i, 2]], 0]]]; a[n_] := If[n==0, 1, Sum[ b[n-i, i-1, Mod[i, 2]], {i, 1, n}]]; Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Jul 02 2015, after _Alois P. Heinz_ *)
%o A218355 (PARI)
%o A218355 N=76; x='x+O('x^N);
%o A218355 gf179080 = sum(n=0, N, x^(n*(n+1)/2) / prod(k=1, n+1, 1-x^(2*k) ) );
%o A218355 gf179049 = sum(n=0, N, x^(n*(n+1)/2) / prod(k=1, n, 1-x^(2*k) ) );
%o A218355 gf = gf179080 - gf179049;
%o A218355 Vec( gf )
%o A218355 (PARI) N=75; x='x+O('x^N); gf = sum(n=0, N, x^((n+1)*(n+4)/2) / prod(k=1, n+1, 1-x^(2*k) ) ); v2=Vec( gf )
%o A218355 (Sage) # After _Alois P. Heinz_.
%o A218355 def A218355(n):
%o A218355     @cached_function
%o A218355     def h(n, k):
%o A218355         if n == 0: return 1
%o A218355         if k  > n: return 0
%o A218355         return h(n, k+2) + h(n-k, k+1)
%o A218355     return h(n, 2)
%o A218355 print([A218355(n) for n in range(76)]) # _Peter Luschny_, Feb 25 2020
%Y A218355 Cf. A179049 (parts are odd, even, odd, even, ...).
%K A218355 nonn
%O A218355 0,10
%A A218355 _Joerg Arndt_, Oct 27 2012