This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218363 #17 Feb 16 2025 08:33:18 %S A218363 1,3,7,5,292561,9,29,64,19,31,121,35,47691619,71,2047927,17,103,27, %T A218363 2129,25,43,363,461,448,6551,143074857,4591,145,233,151, %U A218363 40888990028603,193,67,239,8484269,73,1925658337781,6387,333841333,1600,83,129,173,605,5558659 %N A218363 Minimal order of degree-n irreducible polynomials over GF(23). %C A218363 a(n) < 23^n. %H A218363 Max Alekseyev, <a href="/A218363/b218363.txt">Table of n, a(n) for n = 1..306</a> %H A218363 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IrreduciblePolynomial.html">Irreducible Polynomial</a> %H A218363 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PolynomialOrder.html">Polynomial Order</a> %F A218363 a(n) = min(M(n)) with M(n) = {d : d|(23^n-1)} \ U(n-1) and U(n) = M(n) union U(n-1) for n>0, U(0) = {}. %F A218363 a(n) = A218340(n,1) = A213224(n,9). %p A218363 with(numtheory): %p A218363 M:= proc(n) M(n):= divisors(23^n-1) minus U(n-1) end: %p A218363 U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end: %p A218363 a:= n-> min(M(n)[]): %p A218363 seq(a(n), n=1..30); %t A218363 M[n_] := M[n] = Divisors[23^n - 1]~Complement~U[n - 1]; %t A218363 U[n_] := U[n] = If[n == 0, {}, M[n]~Union~U[n - 1]]; %t A218363 a[n_] := Min[M[n]]; %t A218363 Table[Print[n, " ", a[n]]; a[n], {n, 1, 45}] (* _Jean-François Alcover_, Oct 24 2022, after _Alois P. Heinz_ *) %Y A218363 Cf. A213224, A218340. %K A218363 nonn %O A218363 1,2 %A A218363 _Alois P. Heinz_, Oct 27 2012