cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218376 a(n) = 5^n*sum_{i=1..n} i^5/5^i.

This page as a plain text file.
%I A218376 #17 Nov 29 2012 18:49:58
%S A218376 0,1,37,428,3164,18945,102501,529312,2679328,13455689,67378445,
%T A218376 337053276,1685515212,8427947353,42140274589,210702132320,
%U A218376 1053511710176,5267559970737,26337801743253,131689011192364,658445059161820
%N A218376 a(n) = 5^n*sum_{i=1..n} i^5/5^i.
%F A218376 From _Peter Bala_, Nov 29 2012: (Start)
%F A218376 a(n) = 1/512*(3535*5^n - (128*n^5 + 800*n^4 + 2400*n^3 + 4600*n^2 + 5700*n + 3535)).
%F A218376 Recurrence equation: a(n) = 5*a(n-1) + n^5.
%F A218376 G.f.: (x + 26*x^2 + 66*x^3 + 26*x^4 + x^5)/((1 - 5*x)*(1 - x)^6) = x + 37*x^2 + 428*x^3 + ....
%F A218376 (End)
%t A218376 f[n_] := 5^n*Sum[i^5/5^i, {i, n}]; Array[f, 30, 0]
%Y A218376 Cf. A000217, A047520, A066999, A067534. A008292.
%K A218376 easy,nonn
%O A218376 0,3
%A A218376 _Robert G. Wilson v_, Nov 28 2012