cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218387 Decimal expansion of the spanning tree constant of the square lattice.

This page as a plain text file.
%I A218387 #32 Jun 22 2025 14:38:01
%S A218387 1,1,6,6,2,4,3,6,1,6,1,2,3,2,7,5,1,2,0,5,5,3,5,3,7,8,2,5,8,7,3,5,7,9,
%T A218387 6,7,5,4,5,6,2,6,4,6,1,5,9,4,3,3,4,9,0,8,1,0,4,4,0,0,6,2,7,6,4,4,6,9,
%U A218387 9,0,5,4,7,5,2,1,7,5,5,4,4,6,9,0,6,5,0,7,2,9,7,2,1,2,5,3,6,2,3,5,6,3,5,8,9,1,2,1,1,1,1,5,1
%N A218387 Decimal expansion of the spanning tree constant of the square lattice.
%D A218387 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.7 and 5.22.6, pp. 54, 399.
%D A218387 Asmus L. Schmidt, Ergodic theory of complex continued fractions, Number Theory with an Emphasis on the Markoff Spectrum, in: A. D. Pollington and W. Moran (eds.), Number Theory with an Emphasis on the Markoff Spectrum, Dekker, 1993, pp. 215-226.
%H A218387 G. C. Greubel, <a href="/A218387/b218387.txt">Table of n, a(n) for n = 1..10000</a>
%H A218387 Anthony J. Guttmann, <a href="http://arxiv.org/abs/1207.2815">Spanning tree generating functions and Mahler measure</a>, arXiv:1207.2815 [math-ph], 2012.
%H A218387 Sheldon Yang, <a href="https://dx.doi.org/10.1080/0020739X.1192.10715688">Some properties of Catalan's constant G</a>, Internat. J. Math. Ed. Sci. Tech. 23 (4) (1992) 549-556, L*(1).
%F A218387 Equals the product of A006752 by A088538.
%F A218387 From _Amiram Eldar_, Jul 22 2020: (Start)
%F A218387 Equals 1 + Sum_{k>=1} (2*k-1)!!^2/((2*k)!!^2 * (2*k + 1)).
%F A218387 Equals Sum_{k>=0} binomial(2*k,k)^2/(16^k * (2*k + 1)). (End)
%F A218387 Equals (Sum_{n>=1} (-1)^(n+1)/(2*n - 1)^2) / (Sum_{n>=1} (-1)^(n+1)/(2*n - 1)) [Schmidt] (see Finch). - _Stefano Spezia_, Nov 07 2024
%F A218387 Equals log(A229728) = A247685/Pi. - _Hugo Pfoertner_, Nov 07 2024
%F A218387 Equals Integral_{x=0..1} EllipticK(x)/(Pi*sqrt(x)) dx. - _Kritsada Moomuang_, Jun 21 2025
%e A218387 1.16624361612327512055353782587357967545626461594...
%p A218387 evalf(Catalan*4/Pi) ;
%t A218387 RealDigits[4*Catalan/Pi, 10, 100][[1]] (* _G. C. Greubel_, Aug 23 2018 *)
%o A218387 (PARI) default(realprecision, 100); 4*Catalan/Pi \\ _G. C. Greubel_, Aug 23 2018
%o A218387 (Magma) R:= RealField(100); 4*Catalan(R)/Pi(R); // _G. C. Greubel_, Aug 23 2018
%Y A218387 Cf. A006752 (Catalan), A088538 (4/Pi), A229728, A247685.
%K A218387 cons,easy,nonn
%O A218387 1,3
%A A218387 _R. J. Mathar_, Oct 27 2012