cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218395 Numbers whose square is the sum of the squares of 11 consecutive integers.

This page as a plain text file.
%I A218395 #70 Dec 12 2022 15:00:11
%S A218395 11,77,143,1529,2849,30503,56837,608531,1133891,12140117,22620983,
%T A218395 242193809,451285769,4831736063,9003094397,96392527451,179610602171,
%U A218395 1923018812957,3583208949023,38363983731689,71484568378289,765356655820823,1426108158616757
%N A218395 Numbers whose square is the sum of the squares of 11 consecutive integers.
%C A218395 a(n)^2 = Sum_{j=0..10} (x(n)+j)^2 = 11*(x(n)+5)^2 + 110 and b(n) = x(n)+5 give the Pell equation a(n)^2 - 11*b(n)^2 = 110 with the 2 fundamental solutions (11; 1) and (77; 23) and the solution (10; 3) for the unit form.  A198949(n+1) = b(n); A106521(n) = x(n) and x(0) = -4.
%C A218395 General: If the sum of the squares of c neighboring numbers is a square with c = 3*k^2-1 and 1 <= k, then a(n)^2 = Sum_{j=0..c-1} (x(n)+j)^2 and b(n) = 2*x(n)+c-1 give the Pell equation a(n)^2 - c*(b(n)/2)^2 = binomial(c+1,3)/2.  a(n) = 2*e1*a(n-k) - a(n-2*k); b(n) = 2*e1*b(n-k) - b(n-2*k); a(n) = e1*a(n-k) + c*e2*b(n-k); b(n) = e2*a(n-k) + e1*b(n-k) with the solution (e1; e2) for the unit form.
%H A218395 V. Pletser, <a href="http://arxiv.org/abs/1409.7972">Finding all squared integers expressible as the sum of consecutive squared integers using generalized Pell equation solutions with Chebyshev polynomials</a>, arXiv preprint arXiv:1409.7972 [math.NT], 2014. See Table 1 p. 7.
%H A218395 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,20,0,-1).
%F A218395 a(n) = 20*a(n-2) - a(n-4); b(n) = 20*b(n-2) - b(n-4);
%F A218395 a(n) = 10*a(n-2) + 33*b(n-2); b(n) = 3*a(n-2) + 10*b(n-2).
%F A218395 a(n) = a(n-1) + 20*a(n-2) - 20*a(n-3) - a(n-4) + a(n-5).
%F A218395 G.f.: 11 * (1-x)*(1+8*x+x^2) / (1 - 20*x^2 + x^4).
%F A218395 With r=sqrt(11); s=10+3*r; t=10-3*r:
%F A218395 a(2*n) = ((11+r)*s^n + (11-r)*t^n)/2.
%F A218395 a(2*n+1) = ((77+23*r) * s^n + (77-23*r)*t^n)/2.
%F A218395 a(n) = 11 * A198947(n+1). - _Bill McEachen_, Dec 01 2022
%e A218395 For n=6, Sum_{z=17132..17142} z^2 = 3230444569;
%e A218395 a(6) = sqrt(3230444569) = 56837;
%e A218395 b(6) = sqrt((a(6)^2-110)/11) = 17137; x(6) = b(6)-5 = 17132.
%p A218395 s:=0: n:=-1:
%p A218395 for j from -5 to 5 do s:=s+j^2: end do:
%p A218395 for z from -4 to 100000 do
%p A218395   s:=s-(z-1)^2+(z+10)^2: r:=sqrt(s):
%p A218395   if (r=floor(r)) then
%p A218395     n:=n+1: a(n):=r: x(n):=z:
%p A218395     b(n):=sqrt((s-110)/11):
%p A218395     print(n,a(n),b(n),x(n)):
%p A218395   end if:
%p A218395 end do:
%t A218395 LinearRecurrence[{0,20,0,-1},{11,77,143,1529},30] (* _Harvey P. Dale_, Aug 15 2022 *)
%Y A218395 c=2: A001653(n+1) = a(n); A002315(n) = b(n); A001652(n) = x(n).
%Y A218395 Cf. A001032 (11 is a term of that sequence), A198947.
%K A218395 nonn,easy
%O A218395 0,1
%A A218395 _Paul Weisenhorn_, Oct 28 2012