cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218472 Number of 3n-length n-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.

This page as a plain text file.
%I A218472 #12 Mar 25 2016 13:13:54
%S A218472 1,1,4,61,1810,82593,5153626,410380885,39868799482,4579454148865,
%T A218472 607729841261560,91553310170011501,15441283593044256696,
%U A218472 2883254656878648757729,590578881927993264483880,131681888589427990097216549,31753512197914767223878851626
%N A218472 Number of 3n-length n-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.
%H A218472 Alois P. Heinz, <a href="/A218472/b218472.txt">Table of n, a(n) for n = 0..150</a>
%F A218472 a(n) = 1/n * Sum_{j=0..n-1} C(3*n,j)*(n-j)*(n-1)^j for n>1, a(n) = 1 else.
%F A218472 a(n) ~ 3^(3*n + 1/2) * n^(n - 5/2) / (sqrt(Pi) * exp(1) * 2^(2*n+2)). - _Vaclav Kotesovec_, Mar 25 2016
%p A218472 a:= n-> `if`(n<2, 1, add(binomial(3*n, j)*(n-j)*(n-1)^j, j=0..n-1)/n):
%p A218472 seq(a(n), n=0..20);
%Y A218472 Diagonal of A213027.
%K A218472 nonn
%O A218472 0,3
%A A218472 _Alois P. Heinz_, Oct 29 2012