cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218473 Number of 3n-length 3-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.

This page as a plain text file.
%I A218473 #27 Feb 06 2022 23:09:23
%S A218473 1,1,7,61,591,6101,65719,729933,8297247,96044101,1128138567,
%T A218473 13411861629,161066465583,1950996039669,23808159962839,
%U A218473 292413627476141,3611870017079871,44838216520062117,559127724970143079,7000374603097246173,87964883375131331151
%N A218473 Number of 3n-length 3-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.
%H A218473 Alois P. Heinz, <a href="/A218473/b218473.txt">Table of n, a(n) for n = 0..300</a>
%F A218473 a(n) = (1/n) * Sum_{j=0..n-1} binomial(3*n,j)*(n-j)*2^j for n>0, a(0) = 1.
%F A218473 a(n) ~ 3^(3*n-3/2)/(sqrt(Pi)*2^(n-1)*n^(3/2)). - _Vaclav Kotesovec_, May 22 2013
%F A218473 G.f. (for n>0): (1/(81*x-3)+2/((3-81*x)*(1-27*x-3*sqrt(3*x*(27*x-2)))^(2/3))). - _Vaclav Kotesovec_, Jul 06 2013
%F A218473 From _Peter Bala_, Feb 06 2022: (Start)
%F A218473 The o.g.f. A(x) satisfies the algebraic equation 8*x - 36*x*A(x) + (54*x - 1)*A(x)^2 + (-27*x + 1)*A(x)^3 = 0.
%F A218473 A(x) = (6 - 4*T(2*x))/(2*T(2*x)^2 - 9*T(2*x) + 9), where T(x) = 1 + x*T(x)^3 is the o.g.f. of A001764.
%F A218473 A(x) = 1 + 2*x*B'(2*x)/B(2*x), where B(x) = 2 + x + 2*x^2 + 6*x^3 + 22*x^4 + 91*x^5 + ... is the o.g.f. of A000139.
%F A218473 exp(Sum_{n >= 1} a(n)*x*n/n) = 1 + x + 4*x^2 + 24*x^3 + 176*x^4 + 1456*x^5 + ... is the o.g.f. of A000309, a power series with integral coefficients. It follows that the Gauss congruences a(n*p^k) == a(n*p*(k-1)) (mod p^k) hold for all prime p and positive integers n and k. (End)
%p A218473 a:= n-> `if`(n=0, 1, add(binomial(3*n, j)*(n-j)*2^j, j=0..n-1)/n):
%p A218473 seq(a(n), n=0..20);
%p A218473 # second Maple program
%p A218473 a:= proc(n) a(n):= `if`(n<3, [1, 1, 7][n+1], (-81*(3*n-1)*(3*n-5)*a(n-2)
%p A218473        +(81*n^2-81*n+15)*a(n-1))/ ((2*n-1)*n))
%p A218473     end:
%p A218473 seq(a(n), n=0..20);
%t A218473 Flatten[{1,Table[1/n*Sum[Binomial[3*n,j]*(n-j)*2^j,{j,0,n-1}],{n,1,20}]}] (* _Vaclav Kotesovec_, May 22 2013 *)
%t A218473 Flatten[{1,Table[FullSimplify[SeriesCoefficient[(1/(81*x-3)+2/((3-81*x)*(1-27*x-3*Sqrt[3*x*(27*x-2)])^(2/3))),{x,0,n}]],{n,1,10}]}] (* _Vaclav Kotesovec_, Jul 06 2013 *)
%Y A218473 Column k=3 of A213027. Cf. A000139, A000309, A001764.
%K A218473 nonn,easy
%O A218473 0,3
%A A218473 _Alois P. Heinz_, Oct 29 2012