cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218475 Number of 3n-length 5-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.

This page as a plain text file.
%I A218475 #10 Oct 23 2015 12:21:09
%S A218475 1,1,13,217,4085,82593,1751197,38413481,864413317,19842830065,
%T A218475 462825376685,10937407206265,261311076852245,6301225556698177,
%U A218475 153160687795008445,3748598210810053449,92303640047399410341,2285025852515378528913,56836898766186234593485
%N A218475 Number of 3n-length 5-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.
%H A218475 Alois P. Heinz, <a href="/A218475/b218475.txt">Table of n, a(n) for n = 0..250</a>
%F A218475 a(n) = 1/n * Sum_{j=0..n-1} C(3*n,j)*(n-j)*4^j for n>0, a(0) = 1.
%F A218475 Recurrence: n*(2*n-1)*(4*n-5)*a(n) = (1216*n^3 - 2452*n^2 + 1267*n - 120)*a(n-1) - 750*(3*n-5)*(3*n-4)*(4*n-1)*a(n-2). - _Vaclav Kotesovec_, Aug 31 2014
%F A218475 a(n) ~ 4 * 3^(3*n+1/2) / (49 * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Aug 31 2014
%p A218475 a:= n-> `if`(n=0, 1, add(binomial(3*n, j)*(n-j)*4^j, j=0..n-1)/n):
%p A218475 seq(a(n), n=0..20);
%Y A218475 Column k=5 of A213027.
%K A218475 nonn
%O A218475 0,3
%A A218475 _Alois P. Heinz_, Oct 29 2012