cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218476 Number of 3n-length 6-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.

This page as a plain text file.
%I A218476 #11 Oct 23 2015 12:20:47
%S A218476 1,1,16,331,7746,195011,5153626,140995716,3958980906,113434797571,
%T A218476 3303283462836,97478710394451,2908594804576416,87605427983818356,
%U A218476 2659959016770389896,81330226479826092536,2501989790308939894026,77386492111973937031491,2405093253522796180052056
%N A218476 Number of 3n-length 6-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.
%H A218476 Alois P. Heinz, <a href="/A218476/b218476.txt">Table of n, a(n) for n = 0..200</a>
%F A218476 a(n) = 1/n * Sum_{j=0..n-1} C(3*n,j)*(n-j)*5^j for n>0, a(0) = 1.
%F A218476 Recurrence: 2*n*(2*n-1)*(9*n-11)*a(n) = 3*(2997*n^3 - 5769*n^2 + 2754*n - 200)*a(n-1) - 3240*(3*n-5)*(3*n-4)*(9*n-2)*a(n-2). - _Vaclav Kotesovec_, Aug 31 2014
%F A218476 a(n) ~ 3^(3*n-7/2) * 5^(n+1) / (sqrt(Pi) * n^(3/2) * 4^n). - _Vaclav Kotesovec_, Aug 31 2014
%p A218476 a:= n-> `if`(n=0, 1, add(binomial(3*n, j)*(n-j)*5^j, j=0..n-1)/n):
%p A218476 seq(a(n), n=0..20);
%Y A218476 Column k=6 of A213027.
%K A218476 nonn
%O A218476 0,3
%A A218476 _Alois P. Heinz_, Oct 29 2012