This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218477 #10 Oct 23 2015 12:21:33 %S A218477 1,1,19,469,13123,395461,12517939,410380885,13811907043,474457464613, %T A218477 16567069507219,586287339402997,20980966876537411,757961579781924805, %U A218477 27605221102084999411,1012488016842242735509,37364825362229946450595,1386427393386051832383589 %N A218477 Number of 3n-length 7-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word. %H A218477 Alois P. Heinz, <a href="/A218477/b218477.txt">Table of n, a(n) for n = 0..200</a> %F A218477 a(n) = 1/n * Sum_{j=0..n-1} C(3*n,j)*(n-j)*6^j for n>0, a(0) = 1. %F A218477 Recurrence: n*(2*n-1)*(5*n-6)*a(n) = (3835*n^3 - 7127*n^2 + 3201*n - 180)*a(n-1) - 3087*(3*n-5)*(3*n-4)*(5*n-1)*a(n-2). - _Vaclav Kotesovec_, Aug 31 2014 %F A218477 a(n) ~ 3^(4*n+3/2) / (121 * 2^(n-1) * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Aug 31 2014 %p A218477 a:= n-> `if`(n=0, 1, add(binomial(3*n, j)*(n-j)*6^j, j=0..n-1)/n): %p A218477 seq(a(n), n=0..20); %Y A218477 Column k=7 of A213027. %K A218477 nonn %O A218477 0,3 %A A218477 _Alois P. Heinz_, Oct 29 2012