cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218477 Number of 3n-length 7-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.

This page as a plain text file.
%I A218477 #10 Oct 23 2015 12:21:33
%S A218477 1,1,19,469,13123,395461,12517939,410380885,13811907043,474457464613,
%T A218477 16567069507219,586287339402997,20980966876537411,757961579781924805,
%U A218477 27605221102084999411,1012488016842242735509,37364825362229946450595,1386427393386051832383589
%N A218477 Number of 3n-length 7-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.
%H A218477 Alois P. Heinz, <a href="/A218477/b218477.txt">Table of n, a(n) for n = 0..200</a>
%F A218477 a(n) = 1/n * Sum_{j=0..n-1} C(3*n,j)*(n-j)*6^j for n>0, a(0) = 1.
%F A218477 Recurrence: n*(2*n-1)*(5*n-6)*a(n) = (3835*n^3 - 7127*n^2 + 3201*n - 180)*a(n-1) - 3087*(3*n-5)*(3*n-4)*(5*n-1)*a(n-2). - _Vaclav Kotesovec_, Aug 31 2014
%F A218477 a(n) ~ 3^(4*n+3/2) / (121 * 2^(n-1) * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Aug 31 2014
%p A218477 a:= n-> `if`(n=0, 1, add(binomial(3*n, j)*(n-j)*6^j, j=0..n-1)/n):
%p A218477 seq(a(n), n=0..20);
%Y A218477 Column k=7 of A213027.
%K A218477 nonn
%O A218477 0,3
%A A218477 _Alois P. Heinz_, Oct 29 2012