cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218479 Number of 3n-length 9-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.

This page as a plain text file.
%I A218479 #11 Oct 23 2015 12:20:00
%S A218479 1,1,25,817,30345,1215521,51186169,2233558545,100094682729,
%T A218479 4579454148865,213011954187225,10043235050384625,478897402022246985,
%U A218479 23054568307757054433,1118987674598361862585,54698321862693296502737,2690410083349269351772713
%N A218479 Number of 3n-length 9-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.
%H A218479 Alois P. Heinz, <a href="/A218479/b218479.txt">Table of n, a(n) for n = 0..200</a>
%F A218479 a(n) = 1/n * Sum_{j=0..n-1} C(3*n,j)*(n-j)*8^j for n>0, a(0) = 1.
%F A218479 Recurrence: n*(2*n-1)*(6*n-7)*a(n) = 3*(3132*n^3 - 5544*n^2 + 2289*n - 80)*a(n-1) - 8748*(3*n-5)*(3*n-4)*(6*n-1)*a(n-2). - _Vaclav Kotesovec_, Aug 31 2014
%F A218479 a(n) ~ 2^(n+3) * 3^(3*n-3/2) / (25 * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Aug 31 2014
%p A218479 a:= n-> `if`(n=0, 1, add(binomial(3*n, j)*(n-j)*8^j, j=0..n-1)/n):
%p A218479 seq(a(n), n=0..20);
%Y A218479 Column k=9 of A213027.
%K A218479 nonn
%O A218479 0,3
%A A218479 _Alois P. Heinz_, Oct 29 2012