cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218480 Number of 3n-length 10-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.

This page as a plain text file.
%I A218480 #12 Oct 23 2015 12:17:11
%S A218480 1,1,28,1027,42850,1929043,91320022,4480436836,225785025802,
%T A218480 11617042380355,607729841261560,32227411217273515,1728444323307664720,
%U A218480 93593058046710649012,5109705135623767855960,280954986758729989837624,15544627425243191634814666
%N A218480 Number of 3n-length 10-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.
%C A218480 In general, column k of A213027 is (for k > 1) asymptotic to a(n) ~ 3^(3*n+1/2) * (k-1)^(n+1) / (sqrt(Pi) * (2*k-3)^2 * 4^n * n^(3/2)). - _Vaclav Kotesovec_, Aug 31 2014
%H A218480 Alois P. Heinz, <a href="/A218480/b218480.txt">Table of n, a(n) for n = 0..200</a>
%F A218480 a(n) = 1/n * Sum_{j=0..n-1} C(3*n,j)*(n-j)*9^j for n>0, a(0) = 1.
%F A218480 Recurrence: 2*n*(2*n-1)*(13*n-15)*a(n) = (55159*n^3 - 95963*n^2 + 38478*n - 1080)*a(n-1) - 27000*(3*n-5)*(3*n-4)*(13*n-2)*a(n-2). - _Vaclav Kotesovec_, Aug 31 2014
%F A218480 a(n) ~ 3^(5*n+5/2) / (289 * sqrt(Pi) * 4^n * n^(3/2)). - _Vaclav Kotesovec_, Aug 31 2014
%p A218480 a:= n-> `if`(n=0, 1, add(binomial(3*n, j)*(n-j)*9^j, j=0..n-1)/n):
%p A218480 seq(a(n), n=0..20);
%Y A218480 Column k=10 of A213027.
%K A218480 nonn
%O A218480 0,3
%A A218480 _Alois P. Heinz_, Oct 29 2012