This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218482 #24 Dec 13 2022 22:57:13 %S A218482 1,1,3,8,21,54,137,344,856,2113,5179,12614,30548,73595,176455,421215, %T A218482 1001388,2371678,5597245,13166069,30873728,72185937,168313391, %U A218482 391428622,908058205,2101629502,4853215947,11183551059,25718677187,59030344851,135237134812,309274516740 %N A218482 First differences of the binomial transform of the partition numbers (A000041). %C A218482 a(n) = A103446(n) for n>=1; here a(0) is set to 1 in accordance with the definition and other important generating functions. %C A218482 From _Gus Wiseman_, Dec 12 2022: (Start) %C A218482 Also the number of sequences of compositions (A133494) with weakly decreasing lengths and total sum n. For example, the a(0) = 1 through a(3) = 8 sequences are: %C A218482 () ((1)) ((2)) ((3)) %C A218482 ((11)) ((12)) %C A218482 ((1)(1)) ((21)) %C A218482 ((111)) %C A218482 ((1)(2)) %C A218482 ((2)(1)) %C A218482 ((11)(1)) %C A218482 ((1)(1)(1)) %C A218482 The case of constant lengths is A101509. %C A218482 The case of strictly decreasing lengths is A129519. %C A218482 The case of sequences of partitions is A141199. %C A218482 The case of twice-partitions is A358831. %C A218482 (End) %H A218482 Alois P. Heinz, <a href="/A218482/b218482.txt">Table of n, a(n) for n = 0..1000</a> %F A218482 G.f.: Product_{n>=1} (1-x)^n / ((1-x)^n - x^n). %F A218482 G.f.: Sum_{n>=0} x^n * (1-x)^(n*(n-1)/2) / Product_{k=1..n} ((1-x)^k - x^k). %F A218482 G.f.: Sum_{n>=0} x^(n^2) * (1-x)^n / Product_{k=1..n} ((1-x)^k - x^k)^2. %F A218482 G.f.: exp( Sum_{n>=1} x^n/((1-x)^n - x^n) / n ). %F A218482 G.f.: exp( Sum_{n>=1} sigma(n) * x^n/(1-x)^n / n ), where sigma(n) is the sum of divisors of n (A000203). %F A218482 G.f.: Product_{n>=1} (1 + x^n/(1-x)^n)^A001511(n), where 2^A001511(n) is the highest power of 2 that divides 2*n. %F A218482 a(n) ~ exp(Pi*sqrt(n/3) + Pi^2/24) * 2^(n-2) / (n*sqrt(3)). - _Vaclav Kotesovec_, Jun 25 2015 %e A218482 G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 21*x^4 + 54*x^5 + 137*x^6 + 344*x^7 +... %e A218482 The g.f. equals the product: %e A218482 A(x) = (1-x)/((1-x)-x) * (1-x)^2/((1-x)^2-x^2) * (1-x)^3/((1-x)^3-x^3) * (1-x)^4/((1-x)^4-x^4) * (1-x)^5/((1-x)^5-x^5) * (1-x)^6/((1-x)^6-x^6) * (1-x)^7/((1-x)^7-x^7) *... %e A218482 and also equals the series: %e A218482 A(x) = 1 + x*(1-x)/((1-x)-x)^2 + x^4*(1-x)^2/(((1-x)-x)*((1-x)^2-x^2))^2 + x^9*(1-x)^3/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3))^2 + x^16*(1-x)^4/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3)*((1-x)^4-x^4))^2 +... %p A218482 b:= proc(n) option remember; %p A218482 add(combinat[numbpart](k)*binomial(n,k), k=0..n) %p A218482 end: %p A218482 a:= n-> b(n)-b(n-1): %p A218482 seq(a(n), n=0..50); # _Alois P. Heinz_, Aug 19 2014 %t A218482 Flatten[{1, Table[Sum[Binomial[n-1,k]*PartitionsP[k+1],{k,0,n-1}],{n,1,30}]}] (* _Vaclav Kotesovec_, Jun 25 2015 *) %o A218482 (PARI) {a(n)=sum(k=0,n,(binomial(n,k)-if(n>0,binomial(n-1,k)))*numbpart(k))} %o A218482 for(n=0,40,print1(a(n),", ")) %o A218482 (PARI) {a(n)=local(X=x+x*O(x^n));polcoeff(prod(k=1,n,(1-x)^k/((1-x)^k-X^k)),n)} %o A218482 (PARI) {a(n)=local(X=x+x*O(x^n));polcoeff(sum(m=0,n,x^m*(1-x)^(m*(m-1)/2)/prod(k=1,m,((1-x)^k - X^k))),n)} %o A218482 (PARI) {a(n)=local(X=x+x*O(x^n));polcoeff(sum(m=0,n,x^(m^2)*(1-X)^m/prod(k=1,m,((1-x)^k - x^k)^2)),n)} %o A218482 (PARI) {a(n)=local(X=x+x*O(x^n));polcoeff(exp(sum(m=1,n+1,x^m/((1-x)^m-X^m)/m)),n)} %o A218482 (PARI) {a(n)=local(X=x+x*O(x^n));polcoeff(exp(sum(m=1,n+1,sigma(m)*x^m/(1-X)^m/m)),n)} %o A218482 (PARI) {a(n)=local(X=x+x*O(x^n));polcoeff(prod(k=1,n,(1 + x^k/(1-X)^k)^valuation(2*k,2)),n)} %Y A218482 Cf. A000041, A000219, A011782, A055887, A063834, A075900, A098407, A101509, A103446, A129519, A141199, A218481. %K A218482 nonn %O A218482 0,3 %A A218482 _Paul D. Hanna_, Oct 29 2012