cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218482 First differences of the binomial transform of the partition numbers (A000041).

This page as a plain text file.
%I A218482 #24 Dec 13 2022 22:57:13
%S A218482 1,1,3,8,21,54,137,344,856,2113,5179,12614,30548,73595,176455,421215,
%T A218482 1001388,2371678,5597245,13166069,30873728,72185937,168313391,
%U A218482 391428622,908058205,2101629502,4853215947,11183551059,25718677187,59030344851,135237134812,309274516740
%N A218482 First differences of the binomial transform of the partition numbers (A000041).
%C A218482 a(n) = A103446(n) for n>=1; here a(0) is set to 1 in accordance with the definition and other important generating functions.
%C A218482 From _Gus Wiseman_, Dec 12 2022: (Start)
%C A218482 Also the number of sequences of compositions (A133494) with weakly decreasing lengths and total sum n. For example, the a(0) = 1 through a(3) = 8 sequences are:
%C A218482   ()  ((1))  ((2))     ((3))
%C A218482              ((11))    ((12))
%C A218482              ((1)(1))  ((21))
%C A218482                        ((111))
%C A218482                        ((1)(2))
%C A218482                        ((2)(1))
%C A218482                        ((11)(1))
%C A218482                        ((1)(1)(1))
%C A218482 The case of constant lengths is A101509.
%C A218482 The case of strictly decreasing lengths is A129519.
%C A218482 The case of sequences of partitions is A141199.
%C A218482 The case of twice-partitions is A358831.
%C A218482 (End)
%H A218482 Alois P. Heinz, <a href="/A218482/b218482.txt">Table of n, a(n) for n = 0..1000</a>
%F A218482 G.f.: Product_{n>=1} (1-x)^n / ((1-x)^n - x^n).
%F A218482 G.f.: Sum_{n>=0} x^n * (1-x)^(n*(n-1)/2) / Product_{k=1..n} ((1-x)^k - x^k).
%F A218482 G.f.: Sum_{n>=0} x^(n^2) * (1-x)^n / Product_{k=1..n} ((1-x)^k - x^k)^2.
%F A218482 G.f.: exp( Sum_{n>=1} x^n/((1-x)^n - x^n) / n ).
%F A218482 G.f.: exp( Sum_{n>=1} sigma(n) * x^n/(1-x)^n / n ), where sigma(n) is the sum of divisors of n (A000203).
%F A218482 G.f.: Product_{n>=1} (1 + x^n/(1-x)^n)^A001511(n), where 2^A001511(n) is the highest power of 2 that divides 2*n.
%F A218482 a(n) ~ exp(Pi*sqrt(n/3) + Pi^2/24) * 2^(n-2) / (n*sqrt(3)). - _Vaclav Kotesovec_, Jun 25 2015
%e A218482 G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 21*x^4 + 54*x^5 + 137*x^6 + 344*x^7 +...
%e A218482 The g.f. equals the product:
%e A218482 A(x) = (1-x)/((1-x)-x) * (1-x)^2/((1-x)^2-x^2) * (1-x)^3/((1-x)^3-x^3) * (1-x)^4/((1-x)^4-x^4) * (1-x)^5/((1-x)^5-x^5) * (1-x)^6/((1-x)^6-x^6) * (1-x)^7/((1-x)^7-x^7) *...
%e A218482 and also equals the series:
%e A218482 A(x) = 1  +  x*(1-x)/((1-x)-x)^2  +  x^4*(1-x)^2/(((1-x)-x)*((1-x)^2-x^2))^2  +  x^9*(1-x)^3/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3))^2  +  x^16*(1-x)^4/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3)*((1-x)^4-x^4))^2 +...
%p A218482 b:= proc(n) option remember;
%p A218482       add(combinat[numbpart](k)*binomial(n,k), k=0..n)
%p A218482     end:
%p A218482 a:= n-> b(n)-b(n-1):
%p A218482 seq(a(n), n=0..50);  # _Alois P. Heinz_, Aug 19 2014
%t A218482 Flatten[{1, Table[Sum[Binomial[n-1,k]*PartitionsP[k+1],{k,0,n-1}],{n,1,30}]}] (* _Vaclav Kotesovec_, Jun 25 2015 *)
%o A218482 (PARI) {a(n)=sum(k=0,n,(binomial(n,k)-if(n>0,binomial(n-1,k)))*numbpart(k))}
%o A218482 for(n=0,40,print1(a(n),", "))
%o A218482 (PARI) {a(n)=local(X=x+x*O(x^n));polcoeff(prod(k=1,n,(1-x)^k/((1-x)^k-X^k)),n)}
%o A218482 (PARI) {a(n)=local(X=x+x*O(x^n));polcoeff(sum(m=0,n,x^m*(1-x)^(m*(m-1)/2)/prod(k=1,m,((1-x)^k - X^k))),n)}
%o A218482 (PARI) {a(n)=local(X=x+x*O(x^n));polcoeff(sum(m=0,n,x^(m^2)*(1-X)^m/prod(k=1,m,((1-x)^k - x^k)^2)),n)}
%o A218482 (PARI) {a(n)=local(X=x+x*O(x^n));polcoeff(exp(sum(m=1,n+1,x^m/((1-x)^m-X^m)/m)),n)}
%o A218482 (PARI) {a(n)=local(X=x+x*O(x^n));polcoeff(exp(sum(m=1,n+1,sigma(m)*x^m/(1-X)^m/m)),n)}
%o A218482 (PARI) {a(n)=local(X=x+x*O(x^n));polcoeff(prod(k=1,n,(1 + x^k/(1-X)^k)^valuation(2*k,2)),n)}
%Y A218482 Cf. A000041, A000219, A011782, A055887, A063834, A075900, A098407, A101509, A103446, A129519, A141199, A218481.
%K A218482 nonn
%O A218482 0,3
%A A218482 _Paul D. Hanna_, Oct 29 2012