This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218496 #10 Aug 16 2013 11:54:09 %S A218496 1,5,33,281,2993,38705,592489,10516441,212841889,4845154913, %T A218496 122664558905,3421333467689,104297273041969,3451364116327249, %U A218496 123251578626936841,4725537745859375705,193647372258547916609,8447809104669814884545,390938955429073736493145 %N A218496 4th iteration of the hyperbinomial transform on the sequence of 1's. %C A218496 See A088956 for the definition of the hyperbinomial transform. %H A218496 Alois P. Heinz, <a href="/A218496/b218496.txt">Table of n, a(n) for n = 0..150</a> %F A218496 E.g.f.: exp(x) * (-LambertW(-x)/x)^4. %F A218496 a(n) = Sum_{j=0..n} 4 * (n-j+4)^(n-j-1) * C(n,j). %F A218496 Hyperbinomial transform of A089464. %F A218496 a(n) ~ 4*exp(4+exp(-1))*n^(n-1). - _Vaclav Kotesovec_, Aug 16 2013 %p A218496 a:= n-> add(4*(n-j+4)^(n-j-1)*binomial(n,j), j=0..n): %p A218496 seq (a(n), n=0..20); %Y A218496 Column k=4 of A144303. %K A218496 nonn %O A218496 0,2 %A A218496 _Alois P. Heinz_, Oct 30 2012