cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218496 4th iteration of the hyperbinomial transform on the sequence of 1's.

This page as a plain text file.
%I A218496 #10 Aug 16 2013 11:54:09
%S A218496 1,5,33,281,2993,38705,592489,10516441,212841889,4845154913,
%T A218496 122664558905,3421333467689,104297273041969,3451364116327249,
%U A218496 123251578626936841,4725537745859375705,193647372258547916609,8447809104669814884545,390938955429073736493145
%N A218496 4th iteration of the hyperbinomial transform on the sequence of 1's.
%C A218496 See A088956 for the definition of the hyperbinomial transform.
%H A218496 Alois P. Heinz, <a href="/A218496/b218496.txt">Table of n, a(n) for n = 0..150</a>
%F A218496 E.g.f.: exp(x) * (-LambertW(-x)/x)^4.
%F A218496 a(n) = Sum_{j=0..n} 4 * (n-j+4)^(n-j-1) * C(n,j).
%F A218496 Hyperbinomial transform of A089464.
%F A218496 a(n) ~ 4*exp(4+exp(-1))*n^(n-1). - _Vaclav Kotesovec_, Aug 16 2013
%p A218496 a:= n-> add(4*(n-j+4)^(n-j-1)*binomial(n,j), j=0..n):
%p A218496 seq (a(n), n=0..20);
%Y A218496 Column k=4 of A144303.
%K A218496 nonn
%O A218496 0,2
%A A218496 _Alois P. Heinz_, Oct 30 2012