cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218497 5th iteration of the hyperbinomial transform on the sequence of 1's.

This page as a plain text file.
%I A218497 #8 Oct 18 2013 15:12:26
%S A218497 1,6,46,441,5156,71801,1166886,21756251,458803176,10814534541,
%T A218497 282098765426,8074875680471,251807768368956,8501320507058801,
%U A218497 309046115586282726,12039399243732745851,500492026353038459216,22119195334250297991701,1035767312348853244634586
%N A218497 5th iteration of the hyperbinomial transform on the sequence of 1's.
%C A218497 See A088956 for the definition of the hyperbinomial transform.
%H A218497 Alois P. Heinz, <a href="/A218497/b218497.txt">Table of n, a(n) for n = 0..150</a>
%F A218497 E.g.f.: exp(x) * (-LambertW(-x)/x)^5.
%F A218497 a(n) = Sum_{j=0..n} 5 * (n-j+5)^(n-j-1) * C(n,j).
%F A218497 Hyperbinomial transform of A218496.
%F A218497 a(n) ~ 5*exp(5+exp(-1))*n^(n-1). - _Vaclav Kotesovec_, Oct 18 2013
%p A218497 a:= n-> add(5*(n-j+5)^(n-j-1)*binomial(n,j), j=0..n):
%p A218497 seq (a(n), n=0..20);
%t A218497 Table[Sum[5*(n-j+5)^(n-j-1)*Binomial[n,j],{j,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 18 2013 *)
%Y A218497 Column k=5 of A144303.
%K A218497 nonn
%O A218497 0,2
%A A218497 _Alois P. Heinz_, Oct 30 2012