This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218497 #8 Oct 18 2013 15:12:26 %S A218497 1,6,46,441,5156,71801,1166886,21756251,458803176,10814534541, %T A218497 282098765426,8074875680471,251807768368956,8501320507058801, %U A218497 309046115586282726,12039399243732745851,500492026353038459216,22119195334250297991701,1035767312348853244634586 %N A218497 5th iteration of the hyperbinomial transform on the sequence of 1's. %C A218497 See A088956 for the definition of the hyperbinomial transform. %H A218497 Alois P. Heinz, <a href="/A218497/b218497.txt">Table of n, a(n) for n = 0..150</a> %F A218497 E.g.f.: exp(x) * (-LambertW(-x)/x)^5. %F A218497 a(n) = Sum_{j=0..n} 5 * (n-j+5)^(n-j-1) * C(n,j). %F A218497 Hyperbinomial transform of A218496. %F A218497 a(n) ~ 5*exp(5+exp(-1))*n^(n-1). - _Vaclav Kotesovec_, Oct 18 2013 %p A218497 a:= n-> add(5*(n-j+5)^(n-j-1)*binomial(n,j), j=0..n): %p A218497 seq (a(n), n=0..20); %t A218497 Table[Sum[5*(n-j+5)^(n-j-1)*Binomial[n,j],{j,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 18 2013 *) %Y A218497 Column k=5 of A144303. %K A218497 nonn %O A218497 0,2 %A A218497 _Alois P. Heinz_, Oct 30 2012