cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218498 6th iteration of the hyperbinomial transform on the sequence of 1's.

This page as a plain text file.
%I A218498 #8 Oct 18 2013 15:12:44
%S A218498 1,7,61,649,8257,123217,2120545,41484625,911339617,22249542241,
%T A218498 598364232529,17591851634353,561695417002225,19366094448215665,
%U A218498 717377453802538753,28423991158962139873,1199873992182732076225,53772852099331738315969,2550272224743737587911025
%N A218498 6th iteration of the hyperbinomial transform on the sequence of 1's.
%C A218498 See A088956 for the definition of the hyperbinomial transform.
%H A218498 Alois P. Heinz, <a href="/A218498/b218498.txt">Table of n, a(n) for n = 0..150</a>
%F A218498 E.g.f.: exp(x) * (-LambertW(-x)/x)^6.
%F A218498 a(n) = A(n,k) = Sum_{j=0..n} 6 * (n-j+6)^(n-j-1) * C(n,j).
%F A218498 Hyperbinomial transform of A218497.
%F A218498 a(n) ~ 6*exp(6+exp(-1))*n^(n-1). - _Vaclav Kotesovec_, Oct 18 2013
%p A218498 a:= n-> add(6*(n-j+6)^(n-j-1)*binomial(n,j), j=0..n):
%p A218498 seq (a(n), n=0..20);
%t A218498 Table[Sum[6*(n-j+6)^(n-j-1)*Binomial[n,j],{j,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 18 2013 *)
%Y A218498 Column k=6 of A144303.
%K A218498 nonn
%O A218498 0,2
%A A218498 _Alois P. Heinz_, Oct 30 2012