This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218498 #8 Oct 18 2013 15:12:44 %S A218498 1,7,61,649,8257,123217,2120545,41484625,911339617,22249542241, %T A218498 598364232529,17591851634353,561695417002225,19366094448215665, %U A218498 717377453802538753,28423991158962139873,1199873992182732076225,53772852099331738315969,2550272224743737587911025 %N A218498 6th iteration of the hyperbinomial transform on the sequence of 1's. %C A218498 See A088956 for the definition of the hyperbinomial transform. %H A218498 Alois P. Heinz, <a href="/A218498/b218498.txt">Table of n, a(n) for n = 0..150</a> %F A218498 E.g.f.: exp(x) * (-LambertW(-x)/x)^6. %F A218498 a(n) = A(n,k) = Sum_{j=0..n} 6 * (n-j+6)^(n-j-1) * C(n,j). %F A218498 Hyperbinomial transform of A218497. %F A218498 a(n) ~ 6*exp(6+exp(-1))*n^(n-1). - _Vaclav Kotesovec_, Oct 18 2013 %p A218498 a:= n-> add(6*(n-j+6)^(n-j-1)*binomial(n,j), j=0..n): %p A218498 seq (a(n), n=0..20); %t A218498 Table[Sum[6*(n-j+6)^(n-j-1)*Binomial[n,j],{j,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 18 2013 *) %Y A218498 Column k=6 of A144303. %K A218498 nonn %O A218498 0,2 %A A218498 _Alois P. Heinz_, Oct 30 2012